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Chapter 1
Matrix Algebra and Computing

Abstract We review some basic linear algebra in this chapter. We assume that
the reader has already taken a first course in linear algebra. We will also use the
chance to introduce notation and mention some matrix operations frequently needed
in computing, such as matrix reshaping, matrix row or column summing, matrix-
vector multiplication, and the Hardmard product.Wewill focus on the computational
and applied aspects of linear algebra rather than the abstract theory, as the former
is much more useful for learning basic machine learning concepts and theory. We
will also use many illustrations to demonstrate the challenging matrix concepts and
operations, as we believe the ability to visualize matrices and matrix operations is
tremendously important for mastering linear algbera.

1.1 Euclidean vectors

A Euclidean vector, or simply a vector, is a geometric object that has both magnitude
and direction.Algebraically, it is typically represented as an ordered list of numbers in

column form, e.g., a = ©­«
1
2
3

ª®¬. For the sake of saving space, we often write a = (1,2,3)T

instead. The ith element of a vector a is written as ai , or in some cases, a(i).
In this book we denote vectors by boldface lowercase letters (such as x,y,α, β). In

contrast, scalars are denoted in plain, lowercase letters (such as x, y, λ, µ). Sometimes,
we have to deal with vectors in row form and we will denote them by plain, uppercase
letters, e.g., A = (1,2,3). (Note, however, that plain, uppercase letters may be used
later in the book to denote other mathematical objects such as sets and random
variables as well.)

When vectors start from the origin, they are identified with points in Euclidean
spaces:

Rn = {x = (x1, . . . , xn)T | x1, . . . , xn ∈ R}, (1.1)
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2 1 Matrix Algebra and Computing

where R is the set of real numbers, and n is a positive integer, called the dimension
of the Euclidean space Rn. To indicate the dimension of a vector, we use notation
like a ∈ R3, which reads a lies in (or belongs to) R3.

Below are some notable constant vectors:

• The n-dimensional zero vector

0n = (0,0, . . . ,0)T ∈ Rn . (1.2)

• The n-dimensional vector of ones

1n = (1,1, . . . ,1)T ∈ Rn . (1.3)

• The canonical basis vectors of Rn

ei = (0, . . . ,0, 1︸︷︷︸
ith entry

,0, . . . ,0)T ∈ Rn, 1 ≤ i ≤ n. (1.4)

In many cases, their dimension are not directly specified but rather should be inferred
from the context. For example, in the sum expression a+1, where a = (1,2,3)T ∈ R3,
the vector of ones must be three dimensional: 1 = (1,1,1)T ∈ R3.

The dot product of two vectors x,y ∈ Rn is defined as

x · y =
n∑
i=1

xiyi . (1.5)

This operation satisfies the following properties:

• x · x ≥ 0 for all x ∈ Rn and x · x = 0 if and only if x = 0;
• x · y = y · x for all x,y ∈ Rn;
• (kx) · y = k(x · y) and (x + y) · z = x · z + y · z for any k ∈ R and x,y,z ∈ Rn.
Two vectors x,y ∈ Rn are said to be orthogonal if their dot product is zero: x · y = 0.
Geometrically, two orthogonal vectors always have an angle of 90 degrees.

A norm on Rn is a function

‖ · ‖ : Rn → R (1.6)

that satisfies the following three conditions:

• ‖x‖ ≥ 0 for all x ∈ Rn and ‖x‖ = 0 if and only if x = 0.
• ‖kx‖ = |k |‖x‖ for any scalar k ∈ R and vector x ∈ Rn.
• ‖x + y‖ ≤ ‖x‖ + ‖y‖ for any two vectors x,y ∈ Rn.
Note that ‖x‖ can be thought of as the length or magnitude of the vector x.

For any fixed number p ≥ 1, the `p norm, or simply the p-norm, on Rn is defined
as

‖x‖p =
(

n∑
i=1
|xi |p

)1/p

, x ∈ Rn. (1.7)
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It is a rich family of norms on Euclidean spaces, including the following three:

• 2-norm (Euclidean norm):

‖x‖2 =

√√
n∑
i=1

x2
i =
√

x · x. (1.8)

• 1-norm (Manhattan norm):

‖x‖1 =
n∑
i=1
|xi |. (1.9)

• ∞-norm (maximum norm):

‖x‖∞ = max
1≤i≤n

|xi |. (1.10)

See Figure 1.1 for illustrations of these three specific norms.

x xx

2-norm 1-norm ∞-norm

Fig. 1.1 Three particular p-norms on R2. In each case, the total length of the line segment(s) in
red is the corresponding norm of the vector x.

Remark 1.1 When the vector p-norm ‖·‖ has an unspecified subscript, it is understood
as the `2 norm. This is often for the purpose of simplifying notation.

Given two nonzero vectors x,y ∈ Rn, let θ be the angle between them. Then

cos θ =
x · y
‖x‖ · ‖y‖ (1.11)

Because | cos θ | ≤ 1, we have the so-called Cauchy-Schwartz Inequality:

|x · y| ≤ ‖x‖ · ‖y‖, for all x,y ∈ Rn, (1.12)

where the equality holds true if and only if the two vectors x,y are parallel to each
other, i.e., y = kx for some constant k ∈ R. An alternative, yet equivalent form of
the above inequality is (

n∑
i=1

xiyi

)2

≤

(
n∑
i=1

x2
i

)
·

(
n∑
i=1

y2
i

)
. (1.13)
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Given any norm ‖ · ‖ on the Euclidean space Rn, the set of all vectors in Rn that
have a unit norm is called a unit circle (under the particular norm):

{v ∈ Rn : ‖v‖ = 1}. (1.14)

Figure 1.2 shows three different unit circles in R2 under three different p-norms.

Fig. 1.2 Three different
kinds of unit circles in R2

corresponding to different
p-norms: blue (1-norm), red
(2-norm) and green (∞-norm).

1

1

−1

−1

Any norm ‖ · ‖ on Rn can be used to measure the distance between two vectors:

dist(x,y) = ‖x − y‖, for all x,y ∈ Rn. (1.15)

For example, the Euclidean norm defines the Euclidean distance:

distE (x,y) = ‖x − y‖2 =

√√
n∑
i=1
(xi − yi)2. (1.16)

Let V ⊆ Rn be a set of vectors in Rn. It is called a subspace of Rn if it contains
the zero vector and is closed under scalar multiplication and vector addition. That is,

• 0 ∈ V ;
• For any vector x ∈ V and scalar k ∈ R, we have kx ∈ V ;
• For any two vectors x,y ∈ V , we have x + y ∈ V .

Given several vectors v1, . . . ,vk ∈ Rn, a linear combination of them is a vector
of the form

v = c1v1 + . . . + ckvk, (1.17)

for some scalars c1, . . . , ck . The linear span, or in short span, of those given vectors
is the set consisting of all of their linear combinations, i.e.,

span{v1, . . . ,vk} = {c1v1 + . . . + ckvk | c1, . . . , ck ∈ R}. (1.18)

The span of any set of vectors is a subspace of Rn.
A set of vectors {v1, . . . ,vk} ⊂ Rn is said to be linearly dependent, if there exist

scalars c1, . . . , ck ∈ R that are not all zero such that

c1v1 + . . . + ckvk = 0. (1.19)
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On the other hand, if all the coefficients {ci}1≤i≤k have to be set to zero in order for
(1.19) to hold true, then the vectors are said to be linearly independent.

A set of vectors {v1, . . . ,vk} ⊂ Rn form a basis for a subspace V ⊆ Rn if the
vectors spanV , and meanwhile, they are linearly independent. The number of vectors
in the basis is then called the dimension of the subspace (It can be shown that different
bases of the same subspace must have the same cardinality).

A basis for a subspace V ⊆ Rn is further called an orthonormal basis if the basis
vectors are orthogonal to each other and all have unit norm. An example would be
the set of canonical basis vectors, {e1, . . . ,en}.

Lastly, we mention the concepts of affine and convex combinations of several
vectors. Let S = {v1, . . . ,vk} ⊂ Rn, and v ∈ Rn a linear combination of the vectors
in S, i.e.,

v = c1v1 + . . . + ckvk (1.20)

for some scalars c1, . . . , ck ∈ R. We call v an affine combination of the vectors in S
if the coefficients satisfy

c1 + · · · + ck = 1 (1.21)

The set of all affine combination of the vectors in S is called the affine span or affine
hull of S:

aSpan(S) = {c1v1 + . . . + ckvk | c1, . . . , ck ∈ R, c1 + · · · + ck = 1}. (1.22)

An affine combination of the vectors in S, i.e., v = c1v1 + . . . + ckvk where
c1 + · · · + ck = 1, is further called a convex combination of the vectors in S if
the coefficients are all nonnegative, i.e., c1 ≥ 0, . . . , ck ≥ 0. The set of all convex
combination of the vectors in S is called the convex hull of S:

cSpan(S) = {c1v1 + . . . + ckvk | c1 ≥ 0, . . . , ck ≥ 0, c1 + · · · + ck = 1}. (1.23)

Note that for any given set S of vectors in Rn, we always have

cSpan(S) ⊆ aSpan(S) ⊆ span(S) ⊆ Rn. (1.24)

Example 1.1 For two linearly independent vectors v1,v2 ∈ R
n, their span is a two-

dimensional linear subspace of Rn containing them. In contrast, the affine span of
them is the line that goes through the two points corresponding to v1,v2:

aSpan{v1,v2} = {c1v1 + c2v2 | c1, c2 ∈ R, c1 + c2 = 1}
= {v1 + c2(v2 − v1) | c2 ∈ R}

and the convex hull of them is the line segment connecting the two points v1,v2 (it
is a part of the affine span). See Figure 1.3, left for a demonstration.

For three linearly dependent vectors v1,v2,v3 ∈ R
n which span a two-dimensional

subspace, their affine span coincides with the linear span:
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Fig. 1.3 Illustration of the
linear, affine and convex
spans of vectors in space.
Left: two linearly independent
vectors; right: three linearly
dependent vectors that have a
two dimensional linear span.

b

b

b

v1

v2

span
affine span

convex span
b

b

v1

v2

span affine span

convex span

0

b

b

v3

0

aSpan{v1,v2,v3} = {c1v1 + c2v2 + c3v3 | c1, c2, c3 ∈ R, c1 + c2 + c3 = 1}
= {v1 + c2(v2 − v1) + c3(v3 − v1) | c2, c3 ∈ R}

and the convex hull of them is the triangular region determined by the three points
(including the interior). See Figure 1.3, right for a demonstration.

1.2 Review of matrix algebra

A matrix is a two-dimensional, rectangular array of real numbers arranged in rows
and columns.1 For any two positive integers m,n, the space of all real valued matrices
that have m rows and n columns is denoted by Rm×n. We say that the size of the
matrices in Rm×n is m × n.

Matrices are denoted by boldface UPPERCASE letters (such as A,B,U,V,Λ,Σ).
We write A ∈ Rm×n to indicate the size of a matrix A with m rows and n columns.
If either m or n is equal to 1, then the matrix A reduces to a row/column vector. The
(i, j) entry of A is typically denoted by ai j . Sometimes, alternative notation such as
A(i, j) and Ai j may be used instead of ai j . The ith row of A is denoted by Ai (or
sometimes A(i, :)), while the jth column of A is written as aj (or sometimes A(:, j)).
See Figure 1.4 for an illustration.

Fig. 1.4 Notation for a single
row, or column, or element of
a matrix A.

Ai

aj

baijA =

In many cases, there is a need to convert a matrix to a vector by preserving all
its entries (this is called vectorizing a matrix), or to reshape a vector to a matrix
with the same elements (this is called matricizing a vector). One typically perform
those operations in a column fashion. For example, to vectorize a matrix A ∈ Rm×n,

1 Note that there could be complex-valued matrices in general, but in this book, we only consider
matrices with real-value entries, as they are sufficient for our purposes.
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we can take the columns of the matrix and stack them vertically following the same
order as they appear in the matrix:

A =
[
a1 a2 · · · an

]
∈ Rm×n −→ vec(A) =


a1
a2
...

an


∈ Rmn. (1.25)

Similarly, to matricize a vector a = (ai) ∈ R` to have m rows, where m must be a
divisor of `, we take the entries of a in the original order and complete one column
of the matrix at a time:

a = (ai) ∈ R` −→ mat(a) =
©­­­­«

a1 am+1 · · · a`−m+1
a2 am+2 · · · a`−m+2
...

...
. . .

...
am a2m · · · a`

ª®®®®¬
. (1.26)

Below are some notable constant matrices:

• The n × n zero matrix: On, where On(i, j) = 0 for all i, j.
• The n × n identity matrix:

In = (δi j), where δi j =

{
1, i = j
0, i , j

(1.27)

• The n × n matrix of ones: Jn, where Jn(i, j) = 1 for all i, j.

That is,

On =

©­­­­«
0 0 · · · 0
0 0 · · · 0
...
...
. . .

...
0 0 · · · 0

ª®®®®¬
, In =

©­­­­«
1 0 · · · 0
0 1 · · · 0
...
...
. . .

...
0 0 · · · 1

ª®®®®¬
, Jn =

©­­­­«
1 1 · · · 1
1 1 · · · 1
...
...
. . .

...
1 1 · · · 1

ª®®®®¬
. (1.28)

Similarly, we will not directly specify the size of any such matrix when it is clear
based on the context.

A matrix A ∈ Rm×n is said to be positive if all its entries are positive, i.e., ai j > 0
for all i, j. Similarly, we say that A is nonnegative if ai j ≥ 0 for all i, j. For example,
In is a nonnegative matrix while Jn is a positive matrix.

If a matrix has mostly zero entries and relatively few nonzero entries, then we say
that the matrix is sparse and often leave the zero entries blank when writing it out.
For example,
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I =
©­­­­«
1

1
. . .

1

ª®®®®¬
∈ Rn×n, E = ©­«

1 3
1

1

ª®¬ ∈ R3×3, P =
©­­­«

1
1 ª®®®¬ ∈ R

4×3. (1.29)

Sparse matrices are easier and more efficient to handle in computing tasks, as we
shall see later in the book.

In some cases we need to characterize a matrix A ∈ Rm×n based on its shape. We
say that A is a

• square matrix, if m = n;
• long matrix, if m < n;
• tall matrix, if m > n.

The last two families of matrices can also be collectively referred to as rectangular
matrices. See Figure 1.5 for an illustration.

Fig. 1.5 Characterization of a
matrix based on its shape.

The notion of a diagonalmatrix usually refers to a square matrix A ∈ Rn×n whose
off diagonal entries are all zero (ai j = 0 for all i , j):

A =
©­­«
a11

. . .

ann

ª®®¬ . (1.30)

Sometimes, a rectangular matrix A ∈ Rm×n is also said to be diagonal if all of its
nonzeros are in the locations {(i, i),1 ≤ i ≤ min(m,n)}, e.g.,

B =
©­­­­­«
1

2
3

ª®®®®®¬
∈ R5×4, C = ©­«

0
2

4

ª®¬R3×5 (1.31)

A (square) diagonal matrix is uniquely determined by the vector that contains all the
diagonal entries, and there is a simple way to denote it. For example,
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A = ©­«
1

2
3

ª®¬ −→ A = diag(a), a = (1,2,3)T .

Alternatively, we may simply write

A = diag(1,2,3).

1.2.1 Matrix multiplication

Given two matrices with compatible sizes, A ∈ Rm×n and B ∈ Rn×p , their matrix
product is another matrix C ∈ Rm×p with entries

C = (ci j), ci j = Aibj =

n∑
k=1

aikbk j . (1.32)

See Figure 1.6 for a demonstration.

Fig. 1.6 Matrixmultiplication
(in an entrywise fashion).

=C A B
b

i

j

i

j

m× p m× n n× p

In the special case when A ∈ Rn×n is a square matrix, one can multiply A and
itself to get the matrix square

A2 = A · A. (1.33)

More generally, for any positive integer k, the kth power of the square matrix A is
defined as

Ak = A · · · · · A︸      ︷︷      ︸
k copies of A

(1.34)

Besides the entry-wise multiplication fashion scheme in (1.32), there are at least
three other ways to multiply A and B together. First, one may carry out the matrix
multiplication in a rowwise fashion, that is to take the rows of A to multiply the
matrix B separately to obtain full rows of C, one at a time (see Figure 1.7):

Ci = Ai · B for each i = 1, . . . ,m . (1.35)
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Fig. 1.7 Matrix rowwise
multiplication.

=C BA
b b b b b b

Consequently,

C =


A1
...

Am

 · B =


A1 · B
...

Am · B

 . (1.36)

Secondly, one may carry out the matrix multiplication in a columnwise fashion,
that is to take the matrixA to multiply columns of B separately to obtain full columns
of C, one at a time (see Figure 1.8):

cj = A · bj, for each j = 1, . . . , p . (1.37)

Fig. 1.8 Columnwise matrix
multiplication

=C A B

b
b
b
b
b
b
b
b

As a result,

C = A ·
[
b1 · · · bp

]
=

[
A · b1 · · · A · bp

]
. (1.38)

Lastly, one may take each column of A to multiply the corresponding row of B,
yielding a set of rank-1 matrices, whose sum is exactly the product matrix C:

C =
[
a1 · · · an

] 
B1
...

Bn

 =
n∑

k=1
ak · Bk . (1.39)

See Figure 1.9 for an illustration.
We use the following example to demonstrate the differentmultiplication schemes.

Example 1.2 Let

A =
(
1 2 3
4 5 6

)
, and B = ©­«

1 −1
1 0
1 1

ª®¬ .
We compute their matrix product, C = AB, in four different ways:



1.2 Review of matrix algebra 11

Fig. 1.9 Matrix product through column-row multiplications.

• Entrywise multiplication:

c11 = A1 · b1 =
(
1 2 3

) ©­«
1
1
1

ª®¬ = 6,

c12 = A1 · b2 =
(
1 2 3

) ©­«
−1
0
1

ª®¬ = 2,

c21 = A2 · b1 =
(
4 5 6

) ©­«
1
1
1

ª®¬ = 16,

c22 = A2 · b2 =
(
4 5 6

) ©­«
−1
0
1

ª®¬ = 2.

Putting everything together, we have

C =
(
c11 c12
c21 c22

)
=

(
6 2
15 2

)
.

• Columnwise multiplication:

c1 = A · b1 =

(
1 2 3
4 5 6

) ©­«
1
1
1

ª®¬ =
(

6
15

)
,

c2 = A · b2 =

(
1 2 3
4 5 6

) ©­«
−1
0
1

ª®¬ =
(
2
2

)
Therefore,

C =
[
c1 c2

]
=

(
6 2

15 2

)
• Rowwise multiplication:
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C1 = A1 · B =
(
1 2 3

) ©­«
1 −1
1 0
1 1

ª®¬ =
(
6 2

)
,

C2 = A2 · B =
(
4 5 6

) ©­«
1 −1
1 0
1 1

ª®¬ =
(
15 2

)
.

Therefore,

C =
[
C1
C2

]
=

(
6 2

15 2

)
.

• Column-row multiplication:

C = a1 · B1 + a2 · B2 + a3 · B3

=

(
1
4

) (
1 −1

)
+

(
2
5

) (
1 0

)
+

(
3
6

) (
1 1

)
=

(
1 −1
4 −4

)
+

(
2 0
5 0

)
+

(
3 3
6 6

)
=

(
6 2

15 2

)
.

When one of the matrices A ∈ Rm×n,B ∈ Rn×p is actually a vector, we can obtain
their product AB as follows:

• If A = (a1, . . . ,an) is a row vector (i.e., m = 1), then

AB =
(
a1 . . . an

) 
B1
...

Bn

 =
n∑
i=1

aiBi . (1.40)

That is, AB is a linear combination of the rows of B; see Figure 1.10.
• If b = (b1, . . . , bn)T is a column vector (i.e., p = 1), then

Ab =
[
a1 . . . an

] ©­­«
b1
...

bn

ª®®¬ =
n∑
j=1

bjaj . (1.41)

That is, Ab is linear combination of columns of A; see Figure 1.11.

This new interpretation implies that for a general matrix product C = AB,
• Each row of C, Ci = AiB, is a linear combination of the rows of B, and
• Each column of C, cj = Abj , is a linear combination of the columns of A.

Example 1.3
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Fig. 1.10 Demonstration of multiplication of a row vector and a matrix. In the diagram, colored
dots represent entries of the row vector while colored lines represented rows of the matrix. The end
product is also a vector.

Fig. 1.11 Demonstration of
multiplication of a matrix and
a column vector.

(
−1 0 1

) ©­«
1 2 3
4 5 6
7 8 9

ª®¬ = −1 ·
(
1 2 3

)
+ 0 ·

(
4 5 6

)
+ 1 ·

(
7 8 9

)
=

(
6 6 6

)
.

©­«
1 2 3
4 5 6
7 8 9

ª®¬ ©­«
−1
0
1

ª®¬ = −1 · ©­«
1
4
7

ª®¬ + 0 · ©­«
2
5
8

ª®¬ + 1 · ©­«
3
6
9

ª®¬ = ©­«
2
2
2

ª®¬ .

Example 1.4 Let A ∈ Rm×n be an arbitrary matrix. To extract a single column of A,
we can multiply A by a canonical basis vector from the right hand side:

aj = Aej =
[
a1 . . . aj . . . an

] ©­­­­­­­«

0
...
1
...
0

ª®®®®®®®¬
, for each j = 1, . . . ,n (1.42)

Similarly, to extract a single row of A, we can multiply A by a canonical basis vector
(in row form) from the left hand side:

Ai = eTi A =
(
0 . . . 1 . . . 0

)


A1
...

Ai

...
Am


, for each i = 1, . . . ,m (1.43)

Lastly, we mention a few identities involving the constant vector of ones. First,
for the vector 1 ∈ Rn,
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1T1 =
(
1 1 . . . 1

) ©­­­­«
1
1
...
1

ª®®®®¬
= n , (1.44)

11T =
©­­­­«
1
1
...
1

ª®®®®¬
(
1 1 . . . 1

)
=

©­­­­«
1 1 . . . 1
1 1 . . . 1
...
...
. . .

...
1 1 . . . 1

ª®®®®¬
= J . (1.45)

Second, for any matrix A ∈ Rm×n,

A1 =
[
a1 . . . an

] ©­­«
1
...
1

ª®®¬ =
n∑
j=1

aj , (1.46)

1TA =
(
1 . . . 1

) 
A1
...

Am

 =
m∑
i=1

Ai , (1.47)

1TA1 =
m∑
i=1

n∑
j=1

ai j . (1.48)

•> Important

The three expressions A1,1TA,1TA1 respectively represent the row sums, column
sums and overall sum of the matrix A, and are very useful and convenient notation
in a lot of practical applications.

Example 1.5 Verify the last three identities using the matrix

A =
(
1 2 3
4 5 6

)
Solution 1.1 By direct calculation,
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A1 =
(
1 2 3
4 5 6

) ©­«
1
1
1

ª®¬ =
(

6
15

)
, (vector of row sums)

1TA =
(
1 1

) (
1 2 3
4 5 6

)
=

(
5 7 9

)
, (row vector of column sums)

1TA1 =
(
1 1

) (
1 2 3
4 5 6

) ©­«
1
1
1

ª®¬ = 21 . (overall sum of all entries)

1.2.1.1 Computational complexity

In many applications it is important to estimate the amount of calculations needed
before carrying out the calculations. Here we assume that addition, subtraction,
multiplication and division among real numbers take (roughly) the same amount of
time, and thus define the computational complexity of a linear algebra operation as
the total number of arithmetic operations. For convenience, we focus on determining
the limiting magnitude of the total count, and will disregard any multiplicative factor
(as well as lower order terms).

Using such a definition, we have the following facts.

Theorem 1.1 Let x,y ∈ Rn and A ∈ Rm×n,B ∈ Rn×p . Assume that m,n, p are all
large. Then

1. Summing up the entries of x requires O(n) operations.
2. Computing the dot product x · y also requires O(n) operations. This implies that

computing the norm of x, ‖x‖2 = x · x, also has O(n) complexity.
3. Multiplying a matrix and a vector Ax requires O(mn) operations.
4. Multiplying two matrices AB requires O(mnp) operations. In particular, com-

puting C2 for a square matrix C ∈ Rn×n takes O(n3) operations.

Proof We have:

1. Adding up the n entries of x takes exactly n − 1 additions.
2. Computing the dot product xTy requires n multiplications between corresponding

entries of the two vecotrs and n − 1 additions for the products. In total, this is
2n − 1 operations.

3. Multiplying a matrix and a vector Ax requires m dot product operations between
the rows of A and the vector x, and thus takes m(2n − 1) arithmetic operations.

4. Multiplying AB requires multiplying every row of A and every column of B,
which is mp dot product operations. Since each such dot product takes 2n − 1
operations, overall it takes mp(2n − 1) operations to multiply A and B. �

In sum, the dot product operation between two vectors have a linear complexity, the
matrix-vector product has a quadratic complexity, and the matrix-matrix product has
a cubic complexity (which is the most expensive of the three and should be avoided,
whenever possible, in the setting of large matrices).
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1.2.1.2 An application of matrix associative law in computing

Matrix multiplications follow the associative and distributive laws (but there is no
commutative law).

• Associative law: For any three matrices A ∈ Rm×n,B ∈ Rn×p and C ∈ Rp×q ,

(AB)C = A(BC) . (1.49)

• Distributive law: For any three matrices A,B ∈ Rm×n and C ∈ Rn×p ,

(A + B)C = AC + BC . (1.50)

Given two matrices A ∈ Rm×n,B ∈ Rn×p , and a vector x ∈ Rp , the associative law
implies that

(AB)x = A(Bx) (1.51)

This equation has important applications in computing.

•> Important

Although mathematically the two sides of (1.51) are equivalent, the right-hand side
(which is two matrix-vector multiplications in order) is computationally much more
efficient:

• (AB)x: This consists of a matrix-matrix multiplication and a matrix-vector oper-
ation in order. The total amount of arithmetic operations is mnp+mp = O(mnp);

• A(Bx): This consists of two matrix-vector multiplications and requires np+mn =
O(n(m + p)) operations in total.

We demonstrate in Fig. 1.12 their difference using a simulation in MATLAB (scripts
can be found in Section).

Fig. 1.12 We generate ran-
dom matrices A, B ∈ Rn×n
and a random vector x ∈ Rn
by uniformly sampling en-
tries from the interval
(0, 1), for each value of
n = 2000, 4000, . . . , 12000,
to compare the CPU times
needed by the operations
(AB)x and A(Bx). The plot
shows that A(Bx) is much
faster than (AB)x at all val-
ues of n. For example, when
n = 12, 000, the ratio of the
two is about 165.1.
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1.2.2 The Hadamard product

Let A,B ∈ Rm×n be two matrices of the same size. The Hadamard product of A
and B, also called the entrywise product, is another matrix C of the same size, with
entries

ci j = ai jbi j, 1 ≤ i ≤ m, 1 ≤ j ≤ n . (1.52)

The Hadamard product is denoted by C = A ◦B. The Hadamard product of a matrix
A ∈ Rm×n and itself is called the entrywise square of A, and denoted as

A◦2 = A ◦ A. (1.53)

Example 1.6 (
0 2 −3
−1 0 −4

)
◦

(
1 0 −3
2 1 −1

)
=

(
0 0 9
−2 0 4

)
.

An important application of the Hadamard product is in efficiently computing the
product of a diagonal matrix and a rectangular matrix when both are large in size.

A︸︷︷︸
diagonal

B =
©­­«
a1

. . .

an

ª®®¬

B1
...

Bn

 =

a1B1
...

anBn

 (1.54)

A B︸︷︷︸
diagonal

= [a1 . . . an]
©­­«
b1

. . .

bn

ª®®¬ = [b1a1 . . . bnan] (1.55)

We may implement the direct row/column operations using the Hadamard prod-
uct. For example, in the former case, let a = diag(A) = (a1, . . . ,an)T ∈ Rn, which
represents the diagonal of A. Then

A︸︷︷︸
n×n

· B︸︷︷︸
n×p

= [a . . . a]︸   ︷︷   ︸
p copies

◦B. (1.56)

See Fig. 1.13 for an illustration of the process. The ordinary way of multiplying
out AB takes O(n2p) operations, while the Hadamard product takes only O(np)
operations, which is one magnitude fewer.

Fig. 1.13 Matrix multipli-
cation (involving a diagonal
matrix) through Hadamard
product.

= ◦B B

Example 1.7 Verify the following identity:
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©­«
−1

0
1

ª®¬ ©­«
1 2 3 10
4 5 6 10
7 8 9 10

ª®¬ = ©­«
−1 −1 −1 −1
0 0 0 0
1 1 1 1

ª®¬ ◦ ©­«
1 2 3 10
4 5 6 10
7 8 9 10

ª®¬
1.2.3 Matrix transpose

The transpose of a matrix A ∈ Rm×n is another matrix B ∈ Rn×m with bi j = aji

for all i, j. We denote the transpose of A by AT . If a square matrix A ∈ Rn×n has
a transpose that coincides with itself, i.e., AT = A, then the matrix A is said to be
symmetric.

The matrix transpose is a linear operator, that is, for any matrices A,B ∈ Rm×n
and scalar k ∈ R,

(kA)T = kAT , and (A + B)T = AT + BT . (1.57)

Clearly, for any matrix A ∈ Rm×n,

(AT )T = A . (1.58)

Given any two matrices A ∈ Rm×n,B ∈ Rn×p , it can be shown that

(AB)T = BTAT . (1.59)

1.2.4 Matrix trace

The trace of a square matrix A ∈ Rn×n is the sum of all its diagonal entries:

tr(A) =
n∑
i=1

aii . (1.60)

Clearly,
tr(O) = 0, tr(In) = tr(Jn) = n , (1.61)

and for any matrix A ∈ Rm×n,

tr(A) = tr(AT ) . (1.62)

Trace is also a linear operator: For any matrices A,B ∈ Rm×n and scalar k ∈ R,

tr(kA) = k · tr(A), and tr(A + B) = tr(A) + tr(B). (1.63)

If A is an m × n matrix and B is an n × m matrix, then
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tr(AB) = tr(BA) . (1.64)

However, note that the matrix AB is not necessarily equal to BA (they don’t even
need to have the same size).

1.2.5 Matrix rank

Let A ∈ Rm×n be an arbitrary matrix. The maximal number of linearly independent
rows (or columns) contained in the matrix is called the rank of A, and denoted as
rank(A):
• A long matrix A ∈ Rm×n is said to have full row rank if rank(B) = m. In this

case, all of its rows are linearly independent.
• A tall matrix A ∈ Rm×n is said to have full column rank if rank(B) = n. In this

case, all of its columns must be linearly independent.
• A squarematrixP ∈ Rn×n is said to be of full rank (or nonsingular) if rank(P) = n;

otherwise, it is said to be rank deficient (or singular).
Another way to define the rank of a matrix A ∈ Rm×n is through a subspace

associated to the matrix. Define

Col(A) = span{a1, . . . ,an} ⊆ Rm (1.65)
Row(A) = span{A1, . . . , Am} ⊆ R

n (1.66)
Nul(A) = {x ∈ Rn | Ax = 0} ⊆ Rn (1.67)

which are respectively called the column, row and null spaces of A. See Figure 1.14
for an illustration.

The rank of A can be alternatively defined as the dimension of the column space
of A:

rank(A) = dim(Col(A)). (1.68)

Furthermore, if rank(A) = r , we must have

dim(Row(A)) = r, and dim(Nul(A)) = n − r . (1.69)

We mention some useful properties about the matrix rank. First of all, for any
matrix A ∈ Rm×n,

0 ≤ rank(A) = rank(AT ) ≤ min(m,n), (1.70)

and rank(A) = 0 if and only if A = O. Second, for any two multiplicatively compat-
ible matrices A ∈ Rm×n,B ∈ Rn×p ,

rank(AB) ≤ min(rank(A), rank(B)). (1.71)
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Col(A) ⊆ Rm

b

a1 a2

an

A ∈ Rm×n

a1 a2 an

Row(A) ⊆ Rn

b

A1

A2
Am

Nul(A) = {x : Ax = 0} ⊆ Rn

A1

A2

Am

Fig. 1.14 Subspaces associated to a matrix. Note that Nul(A), the null space of A, is the solution
set of Ax = 0. It is in the same space with, and also orthogonal to, Row(A), the row space of A.

This shows that matrix multiplication never increases the rank. Third, multiplying a
square, nonsingular matrix on either side of a matrix A ∈ Rm×n always preserves
its rank:

rank(PA) = rank(A) = rank(AQ). (1.72)

where P ∈ Rm×m,Q ∈ Rn×n are any two invertible matrices. Lastly, for any matrix
A ∈ Rm×n, it is always true that

rank(AAT ) = rank(ATA) = rank(A). (1.73)

It is also worth mentioning a few different ways of characterizing rank-1 matrices,
which are simple but often encountered in practical applications.

Theorem 1.2 (Characterizations of rank-1 matrices)
1. Any nonzero row or column vector has rank 1 (as a matrix).
2. A nonzero matrix is of rank 1 if and only if its nonzero rows (or columns) are

multiples of each other.
3. A nonzero matrix A ∈ Rm×n has rank 1 if and only if there exist nonzero vectors

u ∈ Rm,v ∈ Rn, such that A = uvT .

The proof of the theorem is rather straightforward, so we omit it but use the
following example to illustrate it.

Example 1.8 The following shows a rank-1 matrix, as well as its decomposition into
two vectors:
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©­­­«
1 0 3
2 0 6
3 0 9
4 0 12

ª®®®¬ =
©­­­«
1
2
3
4

ª®®®¬
(
1 0 3

)
(1.74)

1.2.6 Matrix inverse

A square matrix A ∈ Rn×n is said to be invertible if there exists another square
matrix of the same size B such that AB = BA = I. In this case, B is called the matrix
inverse of A and denoted as B = A−1.

For any 2× 2 matrix A =
(
a b
c d

)
with ad − bc , 0, it is invertible and its inverse is

A−1 =
1

ad − bc

(
d −b
−c a

)
. (1.75)

In general, a sufficient and necessary condition for a square matrix A to be
invertible is that it is nonsingular (i.e., of full rank).

Let A be an invertible matrix. The matrix AT is also invertible, with

(AT )−1 = (A−1)T , (1.76)

If A is also symmetric, then this equation reduces to

A−1 = (A−1)T .

which shows that A−1 is also symmetric.
If k , 0, then kA is also invertible and the inverse is

(kA)−1 =
1
k

A−1 . (1.77)

For any two invertible matrices A,B of the same size, their product matrix is also
invertible:

(AB)−1 = B−1A−1 . (1.78)

Note, however, that A+B is not necessarily invertible (even though individually they
are invertible).

Lastly, we mention a special case where the inverse of a square matrix Q ∈ Rn×n
coincides with its transpose, i.e.,

Q−1 = QT , or equivalently, QQT = QTQ = I. (1.79)

Such matrices are called orthogonal matrices. For example, the following are or-
thogonal matrices:
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(
0 1
1 0

)
,

©­­«
2√
6

0 1√
3

− 1√
6

1√
2

1√
3

1√
6

1√
2
− 1√

3

ª®®¬ ,
©­­­«

1
2

1
2

1
2

1
2

1
2 −

1
2

1
2 −

1
2

1
2 −

1
2 −

1
2

1
2

1
2

1
2 −

1
2 −

1
2

ª®®®¬ (1.80)

Geometrically, an orthogonal matrix multiplying a vector (i.e., Qx ∈ Rn) represents
a rotation of the vector in the space.

The following theorem shows that orthogonal matrices are square matrices with
orthonormal vectors in columns.

Theorem 1.3 A squarematrixQ = [q1 . . . qn] is orthogonal if and only if its columns
form an orthonormal basis for Rn.

Proof. Since

QTQ =

qT

1
...

qT
n


[
q1 . . . qn

]
= (qT

i qj), (1.81)

we conclude that Q is an orthogonal matrix if and only if

qT
i qj = δi j, for all i, j .

That is, q1, . . . ,qn ∈ R
n are unit vectors and orthogonal to each other, thus forming

an orthonormal basis for Rn.

1.2.7 Matrix determinant

The matrix determinant is a rule to evaluate square matrices to numbers (in order to
determine if they are nonsingular):

det : A ∈ Rn×n 7→ det(A) ∈ R.

Its general definition is quite complicated and we thus omit it but refer the reader to
[cite]. Here, we focus on reviewing the many cases where matrix determinants can
be easily obtained.

For example, if A ∈ Rn×n is diagonal (ai j = 0 for all i , j), upper triangular
(ai j = 0 for all i > j), or lower triangular (ai j = 0 for all i < j), then the determinant
of A is the product of its diagonal entries:

det(A) =
n∏
i=1

aii . (1.82)

Similarly, if A ∈ Rn×n is block diagonal, block upper-triangular or block lower-
triangular,
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A =
©­­­­«

A11
A22

. . .

Akk

ª®®®®¬
, A =

©­­­­«
A11 A12 . . . A1k

A22 . . . A2k
. . .

...
Akk

ª®®®®¬
, A =

©­­­­«
A11
A21 A22
...

...
. . .

Ak1 Ak2 . . . Akk

ª®®®®¬
(1.83)

then the determinant of A is the product of the determinants of the main blocks:

det(A) =
k∏
i=1

det(Aii) . (1.84)

A remarkable property about the use of the matrix determinant is the following.

Theorem 1.4 A square matrix A ∈ Rn×n is invertible (or nonsingular) if and only if
it has a nonzero determinant.

Example 1.9 Find the determinant of the following matrix

A = ©­«
3 0 0
5 1 −1
−2 2 4

ª®¬ ,
and use it to determine of the matrix is invertible.

Solution 1.2 This matrix is block lower-triangular, with two main blocks:

A11 = (3), A22 =

(
1 −1
2 4

)
.

Thus,

det(A) = det(3) · det
(
1 −1
2 4

)
= 3 · (1 · 4 − (−1) · 2) = 3 · 6 = 18.

Since the determinant is nonzero, we conclude that the matrix is nonsingular and
invertible with rank(A) = 3.

We mention a few useful properties about the matrix determinant. For a square
matrix A ∈ Rn×n and scalar k ∈ R,

det(AT ) = det(A), and det(kA) = kn det(A) . (1.85)

Given another square matrix of the same size, B ∈ Rn×n, we have

det(AB) = det(A) det(B) . (1.86)

This implies that the product of two square matrices of the same size is invertible
(nonsingular) if and only if each of them is invertible (nonsingular). Additionally,
for any invertible matrix A,
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det(A−1) = (det(A))−1 . (1.87)

1.2.8 Eigenvalues and eigenvectors

Let A ∈ Rn×n by any square matrix. A scalar λ0 ∈ R is called an eigenvalue of A if
there exists a nonzero vector v0 ∈ R

n such that

Av0 = λ0v0, or equivalently, (A − λ0I)v0 = 0 (1.88)

The vector v0 is called an eigenvector of A (associated to the eigenvalue λ0). In some
cases, we say for short that (λ0,v0) is an eigenpair of A.

For the given matrix A, let

pA(λ) = det(A − λI), for all λ ∈ R. (1.89)

It is a polynomial in λ of order n, called the characteristic polynomial2 of A.
Eigenvalues of A must be roots of the characteristic equation pA(λ) = 0. Note that
the equation could also have several complex roots, which are eigenvalues of the
matrix in the complex number domain. In this section and throughout the book,
for simplicity and to present only what is needed later, we only work with real
eigenvalues (note that eigenvectors corresponding to real eigenvalues must be real as
well) and will completely avoid complex eigenvalues. Thus, whenever we mention
eigenvalues again, they should be understood as real eigenvalues.

Let λ0 ∈ R be an eigenvalue of A ∈ Rn×n. All eigenvectors associated to λ0 span
a linear subspace of Rn, called the eigenspace of A corresponding to the eigenvalue:

E(λ0) = {v ∈ Rn | (A − λ0I)v = 0}. (1.90)

The dimension g0 of E(λ0) is called the geometric multiplicity of λ0, while the degree
a0 of the factor (λ−λ0)

a0 in the characteristic polynomial p(λ) is called the algebraic
multiplicity of λ0.3 Note that we must have

1 ≤ g0 ≤ a0. (1.91)

Remark 1.2 For any matrix A with a zero eigenvalue, the corresponding eigenspace
is identical to the null space of the matrix, i.e.,

E(0) = {v ∈ Rn | Av = 0} = Nul(A). (1.92)

2 Other books may define the characteristic polynomial as p̃A(λ) = det(λI−A). The two definitions
are identical when n is even and will differ by a negative sign when n is odd. This is because
p̃A(λ) = det(−(A − λI)) = (−1)n det(A − λI) = (−1)npA(λ).
3Note that a0 must be as large as possible in the sense that (λ−λ0)

a0 | p(λ), but (λ−λ0)
a0+1 - p(λ)).
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Example 1.10 Find all the eigenvalues and associated eigenvectors of the following
matrix

A = ©­«
3 0 0
5 1 −1
−2 2 4

ª®¬ ,
What are their algebraic and geometric multiplicities?

We start by finding the characteristic polynomial of A

p(λ) = det ©­«
3 − λ 0 0

5 1 − λ −1
−2 2 4 − λ

ª®¬ = (3 − λ)((1 − λ)(4 − λ) + 2) = −(λ − 3)2(λ − 2).

This shows that the matrix A has two eigenvalues λ1 = 3, λ2 = 2 with algebraic
multiplicities a1 = 2,a2 = 1. To find the eigenvectors of A corresponding to λ1 = 3,
we need to solve the following linear system:

(A − 3I)x = 0 : ©­«
0 0 0
5 −2 −1
−2 2 1

ª®¬ ©­«
x1
x2
x3

ª®¬ = ©­«
0
0
0

ª®¬ −→
©­«

0 0 0
3 0 0
−2 2 1

ª®¬ ©­«
x1
x2
x3

ª®¬ = ©­«
0
0
0

ª®¬ .

Clearly, x1 = 0 and 2x2 + x3 = 0. It follows that

x = ©­«
0
x2
−2x2

ª®¬ = x2
©­«

0
1
−2

ª®¬
where x2 is a free variable. This shows that the eigenspace corresponding to λ1
is a one-dimensional subspace consisting of vectors that are all multiples of v1 =
(0,1,−2)T and thus the geometric multiplicity of λ1 is g1 = 1.

For the other eigenvalue λ2 = 2, by similar steps, we can obtain that g2 = 1 and
the associated eigenvectors are all multiples of v2 = (0,1,−1)T . This is left to the
reader to verify.

Interestingly, for any given square matrix, eigenvectors corresponding to distinct
eigenvalues must be linearly independent.

Theorem 1.5 For a given square matrix A ∈ Rn×n, let v1, . . . ,vk ∈ Rn be its
eigenvectors corresponding to k distinct eigenvalues λ1, . . . , λk ∈ R, where k is a
positive integer. Then {v1, . . . ,vk} is a linearly independent set.

Proof Suppose there exist constants c1, . . . , ck ∈ R such that

0 = c1v1 + · · · + ckvk .

We would like to show that c1 = · · · = ck = 0.
For this goal, we first multiply both sides of the above equation by A to get

0 = c1(Av1) + · · · + ck(Avk) = c1λ1v1 + · · · + ckλkvk .
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and then repeat this operation k − 2 times to get

0 = c1λ
2
1v1 + · · · + ckλ2

kvk
...

0 = c1λ
k−1
1 v1 + · · · + ckλk−1

k vk

Collectively, these k equations may be written in matrix form:

O = [c1v1 . . . ckvk] ·
©­­«
1 λ1 · · · λ

k−1
1

...
... . . .

...

1 λk · · · λk−1
k

ª®®¬
The matrix containing the λi’s, i.e.,

M =
©­­«
1 λ1 · · · λ

k−1
1

...
... . . .

...

1 λk · · · λk−1
k

ª®®¬ (1.93)

is called a Vandermonde matrix and is known to have the following determinant (In
Problem you are asked to verify the identity in the case of k = 3):

det(M) =
∏

1≤i< j≤k
(λj − λi) (1.94)

Since all the eigenvalues are distinct (λi , λj for all 1 ≤ i , j ≤ k), we conclude
that M is nonsingular and consequently,

[c1v1 . . . ckvk] = O .

This implies that c1 = · · · = ck = 0 (because v1, . . . ,vk are nonzero vectors). �

1.3 Diagonalization of square matrices

In this part we discuss diagonalization of real, square matrices by real, invertible
matrices, which is an important tool in studying matrices.

1.3.1 Similar matrices

Two square matrices of the same size, A,B ∈ Rn×n, are said to be similar if there
exists an invertible matrix P ∈ Rn×n such that
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B = PAP−1 .

Similar matrices have a lot of things in common, as stated in the following theorem.

Theorem 1.6 Let A,B ∈ Rn×n be two similar matrices. Then they must have the
rank, trace, determinant and characteristic polynomials:

rank(A) = rank(B), tr(A) = tr(B), det(A) = det(B), pA(λ) = pB(λ).

Furthermore, they must have the same eigenvalues, with identical algebraic and
geometric multiplicities, but their eigenvectors are not necessarily the same.

Proof Let P ∈ Rn×n be an invertible matrix such that B = PAP−1. The first three
identities can be verified directly by using corresponding properties about matrix
rank, trace and determinant. This is left to the reader as an exercise.

We prove the identity concerning the characteristic equation:

pB(λ) = det(B − λI) = det(PAP−1 − λI)

= det
(
P−1(A − λI)P

)
= det(P−1) det(A − λI) det(P)

= det(A − λI) = pA(λ).

As a result, A and B have identical eigenvalues with exactly the same algebraic
multiplicities. To see that the geometric multiplicities are also the same, let λ be an
arbitrary eigenvalue shared by A and B and consider the equation

0 = (B − λI) · v = (P−1AP − λI) · v = P−1(A − λI) · Pv,

Multiplying both sides by P gives that

0 = (A − λI) · Pv .

This shows that v is an eigenvector of B corresponding to eigenvalue λ if and only
if Pv is an eigenvector of A corresponding to λ. Therefore, A and B have the same
number of linearly independent eigenvectors corresponding to the same eigenvalue
λ (note that P is invertible), and thus the geometric multiplicity of λ is the same for
both A and B. �

1.3.2 Diagonalizable matrices

A square matrix A ∈ Rn×n is said to be diagonalizable (in the real number domain)
if it is similar to a diagonal matrix, i.e., there exist an invertible matrix P ∈ Rn×n
and a diagonal matrix Λ ∈ Rn×n such that

A = PΛP−1, or equivalently, AP = PΛ . (1.95)
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To better understand this definition, write

P =
[
p1 . . . pn

]
, and Λ = diag(λ1, . . . , λn) .

The above equation can be rewritten as

A
[
p1 . . . pn

]
=

[
p1 . . . pn

] ©­­«
λ1

. . .

λn

ª®®¬ .

By comparing columns of the two sides, we get that

Api = λipi, 1 ≤ i ≤ n. (1.96)

This shows that each λi is an eigenvalue of A with corresponding eigenvector
pi . Therefore, any diagonalizable matrix A ∈ Rn×n must have n real eigenvalues
(and thus no complex eigenvalue), and the full list of those eigenvalues, which are
not necessarily distinct, is called the spectrum of the matrix A. Accordingly, the
factorization of A in (1.95) is called the eigendecomposition of A, or the spectral
decomposition of A.

Example 1.11 The matrix

A =
(
0 1
3 2

)
is diagonalizable because(

0 1
3 2

)
=

(
1 1
3 −1

) (
3
−1

) (
1 1
3 −1

)−1

but the matrix
B =

(
0 1
−1 2

)
is not diagonalizable (we will justify this conclusion later).

1.3.3 Why diagonalization is important

Let A ∈ Rn×n be a diagonalizable matrix, that is, it is similar to a diagonal matrix
Λ = diag(λ1, . . . , λn) of the same size. Since similar matrices share a lot of things
in common, we can use Λ instead to compute the rank, determinant and eigenvalues
(and their algebraic multiplicities) of A, which is a lot simpler as shown in the
theorem below.

Theorem 1.7 For any diagonalizablematrixA ∈ Rn×n with eigenvalues λ1, . . . , λn ∈
R (some of which could repeat each other), we have
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det(A) =
n∏
i=1

λi, tr(A) =
n∑
i=1

λi, and rank(A) = #nonzero eigenvalues. (1.97)

Proof Since A is diagonalizable, there exists an invertible matrix P of the same size
such that

A = PΛP−1, where Λ = diag(λ1, . . . , λn).

It follows that

det(A) = det(PΛP−1) = det(P) det(Λ) det(P−1) = det(Λ) =
n∏
i=1

λi

tr(A) = tr(PΛP−1) = tr(P−1PΛ) = tr(Λ) =
n∑
i=1

λi

rank(A) = rank(PΛP−1) = rank(Λ) =
n∑
i=1

1λi,0

where 1λi,0 is 1 if the statement λi , 0 is true, or 0 otherwise. �

Remark 1.3 In fact, the three identities in the above theorem hold true for any square
matrix A ∈ Rn×n that has n real eigenvalues. The diagonalizability assumption in
the theorem is simply there to ensure that the matrix has n real eigenvalues.

Another application of diagonalization is to help compute matrix powers (Ak)
and exponential (eA), when A ∈ Rn×n is a diagonalizable matrix. To see how to
get different powers of A, suppose A = PΛP−1 for some invertible matrix P and
diagonal matrix Λ. Then

A2 = PΛP−1 · PΛP−1 = PΛ2P−1

A3 = PΛP−1 · PΛP−1 · PΛP−1 = PΛ3P−1 ,

and more generally, for any positive integer k,

Ak = PΛkP−1, where Λk = diag
(
λk1 , . . . , λ

k
n

)
. (1.98)

So the matrix power just falls upon the diagonal matrix Λ!
The matrix exponential of a square matrix A ∈ Rn×n is defined as

eA = I + 1
1!

A + 1
2!

A2 +
1
3!

A3 + · · · =

∞∑
k=0

1
k!

Ak . (1.99)

Since A is diagonalizable, we can apply the above formula for matrix powers to
obtain that

eA =
∞∑
k=0

1
k!

(
PΛkP−1

)
= P

(
∞∑
k=0

1
k!
Λk

)
P−1 = PeΛP−1, (1.100)
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where

eΛ =
∞∑
k=0

1
k!
Λk = diag

(
∞∑
k=0

1
k!
λk1 , . . . ,

∞∑
k=0

1
k!
λkn

)
= diag

(
eλ1, . . . , eλn

)
. (1.101)

Example 1.12 For the diagonalizable matrix in the preceding example,(
0 1
3 2

)
︸︷︷︸

A

=

(
1 1
3 −1

)
︸  ︷︷  ︸

P

(
3
−1

)
︸  ︷︷  ︸
Λ

(
1 1
3 −1

)−1

︸     ︷︷     ︸
P−1

the 10th power of A is

A10 = PΛ10P−1 =

(
1 1
3 −1

) (
310

(−1)10

) ( 1
4

1
4

3
4 −

1
4

)
=

(
14763 14762
44286 44287

)
.

and the matrix exponential of A is

eA = PeΛP−1 =

(
1 1
3 −1

) (
e3

e−1

) ( 1
4

1
4

3
4 −

1
4

)
=

( 1
4 e3 + 3

4 e−1 1
4 e3 − 1

4 e−1
3
4 e3 − 3

4 e−1 3
4 e3 + 1

4 e−1

)
.

1.3.4 Checking diagonalizability

The following theorem lays out a way for checking the diagonalizability of square
matrices.

Theorem 1.8 A matrix A ∈ Rn×n is diagonalizable in the real number domain if
and only if it has n linearly independent eigenvectors in Rn.

Proof We prove both directions:

1. Suppose A is diagonalizable, that is, there exist an invertible matrix P ∈ Rn×n and
a diagonal matrix Λ ∈ Rn×n such that A = PΛP−1. We have already shown that
the columns of P are all eigenvectors of A. Since P is invertible, P has linearly
independent columns. Thus, A has n linearly independent eigenvectors.

2. SupposeA has n linearly independent eigenvectorsp1, . . . ,pn ∈ R
n corresponding

respectively to eigenvalues λ1, . . . , λn ∈ R (some of them could be equal to each
other):

Api = λipi, 1 ≤ i ≤ n.

Let
P =

[
p1 . . . pn

]
, and Λ = diag(λ1, . . . , λn) .

Then P is invertible, and satisfies

AP = PΛ, or equivalently, A = PΛP−1 .
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This shows that A is diagonalizable. �

Example 1.13 In Example we mentioned that the matrix

B =
(

0 1
−1 2

)
is not diagonalizable. The reason is that this matrix has a repeated eigenvalue λ1 = 1
(a1 = 2) but there is only one linearly independent eigenvector v1 =

1√
2
(1,1)T :

0 = (B − λ1I)v =
(
−1 1
−1 1

)
v −→ v1 =

1
√

2

(
1
1

)
.

Example 1.14 Consider the matrix A defined in Example 1.10

A = ©­«
3 0 0
5 1 −1
−2 2 4

ª®¬ ,
It has been shown that A has two distinct eigenvalues λ1 = 3, λ2 = 2 with algebraic
multiplicities a1 = 2,a2 = 1 and geometric multiplicities g1 = g2 = 1. Since
g1 + g2 < 3, we conclude that the matrix is not diagonalizable. However, because
the 3× 3 matrix has 3 eigenvalues (a1 + a2 = 3), we still have det(A) = 3 · 3 · 2 = 18,
tr(A) = 3 + 3 + 2 = 8 and rank(A) = 3. Clearly, they coincide with the results we
have previously obtained.

An immediate consequence of the above theorem, when coupled with Theorem
1.5, is the following result.

Theorem 1.9 Any square matrix A ∈ Rn×n with n distinct real eigenvalues must be
diagonalizable.

Two special classes of real, square matrices that are always diagonalizable in the
real number domain are idempotentmatrices and symmetricmatrices. We study each
of them in some detail next.

1.4 Idempotent matrices

Let A ∈ Rn×n be a square matrix. It is said to be idempotent if A2 = A. We denote
by In(R) the collection of all real, idempotent matrices of size n × n, i.e.,

In(R) = {A ∈ Rn×n | A2 = A}. (1.102)

Example 1.15 The following are some examples of idempotent matrices:
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O, I,
(
1 0
1 0

)
,

( 1
2

1
2

1
2

1
2

)
,

©­«
1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

1
3

ª®¬ , ©­«
1 0 0
0 1 0
0 0 0

ª®¬
In general, any 2 × 2 matrix of the form(

a b
c 1 − a

)
, with a2 + bc = a (1.103)

is idempotent:(
a b
c 1 − a

) (
a b
c 1 − a

)
=

(
a2 + bc ab + b(1 − a)

ca + (1 − a)c bc + (1 − a)2

)
=

(
a b
c 1 − a

)
.

It should also be noted that the constant matrix of 1’s, Jn, is not idempotent:

J2
n = (11T )(11T ) = 1 (1T1)︸︷︷︸

=n

1T = n11T = nJn, (1.104)

but a normalized version of it, 1
nJn, is idempotent:(

1
n

Jn
)2
=

1
n2 J2

n =
1
n2 · nJn =

1
n

Jn. (1.105)

Idempotent matrices have many nice properties. For example, all the matrix
powers of an idempotent matrix A are equal to itself: For any integer k ≥ 3,

Ak = A2 · Ak−2 = A · Ak−2 = Ak−1 = · · · = A.

As a result, the matrix exponential of A is

eA =
∞∑
k=0

1
k!

Ak = I +
∞∑
k=1

1
k!

A = I + (e − 1)A.

Idempotent matrices must have a determinant of 0 or 1, because

det(A) = det(A2) = [det(A)]2.

If an idempotent matrix A satisfies det(A) = 1, then it must be nonsingular. We can
thus multiply both sides of A2 = A by the inverse of A to obtain that

A−1A2 = A−1A −→ A = I

This shows that the only nonsingular idempotent matrices are the identity matrices.
In other words, all non-identity idempotent matrices have a determinant of 0 and are
thus singular.
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Idempotent matrices can only have eigenvalues 0 or 1 or both. Specifically, the
zero matrix O only has the eigenvalue of 0, the identity matrix I only has the
eigenvalue of 1, and all other idempotent matrices must have exactly two distinct
eigenvalues, 0 and 1. To see this, let A be an idempotent matrix with an eigenvalue λ
and corresponding eigenvector v , 0. That is, Av = λv. Using A = A2, we then get

λv = Av =
(
A2

)
v = A(Av) = A(λv) = λ(Av) = λ(λv) = λ2v.

Since v , 0, we must have λ = λ2 and thus λ = 0 or 1.
Using the theory of minimal polynomials [Horn and Johnson, matrix analysis,

2nd ed, section 3.3], it can be proved that every idempotent matrix A ∈ Rn×n is
diagonalizable (in the real number domain). That is, there exists an invertible matrix
P ∈ Rn×n and a diagonal matrix Λ ∈ Rn×n such that A = PΛP−1. Since this also
represents an eigenvalue decomposition, the diagonal of Λ must be a collection of
several 0’s and several 1’s. Let a0 and a1 be the frequencies of 0’s and 1’s on the
diagonal of Λ, which are also the algebraic multiplicities of the eigenvalues 0 and 1,
with 0 ≤ a0,a1 ≤ n and a0 + a1 = n:

• a0 = n,a1 = 0: A = O;
• a0 = 0,a1 = n: A = I;
• 1 ≤ a0,a1 ≤ n − 1: All other idempotent matrices

It follows that tr(A) = a1 and rank(A) = a1.

Example 1.16 Consider the following two matrices:

A =
(
3 −6
1 −2

)
, B = ©­«

2 −2 −4
−1 3 4
1 −2 −3

ª®¬
which are both idempotent. Since tr(A) = 3 − 2 = 1, we conclude that rank(A) = 1,
A has two eigenvalues 0, 1 (each with algebraic multiplicity 1), and det(A) = 0.
Similarly, tr(B) = 2 + 3 − 3 = 2, and thus we further obtain that rank(B) = 2, B has
two eigenvalues 0, 1 (with algebraic multiplicities a0 = 1,a1 = 2), and det(A) = 0.

Example 1.17 Since 1
nJn ∈ Rn×n is idempotent, and obviously has a rank of 1, we

have that it has an eigenvalue of 1 with algebraic multiplicity a1 = 1, and the other
eigenvalue is 0 with a0 = n − 1. This implies that Jn has eigenvalues n and 0 with
algebraic multiplicities a1 = 1,a0 = n − 1:

1
n

Jn · v = λ · v ⇐⇒ Jn · v = nλ · v.

Example 1.18 Here we introduce an important and useful matrix,

Tn = In −
1
n

Jn = In −
1
n

11T ∈ Rn×n (1.106)
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It is called the centeringmatrix because, when applied to a vector x = (x1, . . . , xn)T ∈
Rn, it would center the components of the vector:

Tnx =
(
In −

1
n

Jn
)

x = x − 1
n

11T︸︷︷︸
Jn

x

= x − 1 · 1
n

1Tx = x − 1x̄ =


x1 − x̄
...

xn − x̄


where

x̄ =
1
n

1Tx = 1
n

n∑
i=1

xi

is the mean value of the components of x. We will present more of its geometric
interpretations in Chapter 6, and its applications in the dimension reduction chapters
such as Chapter 9.

Algebraically, Tn has many nice properties. First, it is both symmetric (because
it is the difference of two symmetric matrices) and idempotent:

T2
n =

(
In −

1
n

Jn
) (

In −
1
n

Jn
)

= In −
1
n

Jn −
1
n

Jn +
1
n2 J2

n︸︷︷︸
=nJn

= In −
1
n

Jn
= Tn.

Also,
tr(Tn) = tr(In) −

1
n

tr(Jn) = n −
1
n
· n = n − 1. (1.107)

According to the above theory, we can immediately conclude that

• rank(Tn) = n − 1 and det(Tn) = 0;
• Tn has two distinct eigenvalues, 0 and 1, with algebraic multiplicities a0 = 1 and

a1 = n − 1 respectively.

Furthermore, the unique eigenvalue 0 has a corresponding eigenvector 1, because

Tn1 =
(
In −

1
n

11T
)

1 = In1 − 1
n

1 1T1︸︷︷︸
n

= 1 − 1 = 0 = 0 · 1, (1.108)

Another interpretation is that all the rows of Tn sum to zero (and because of the
symmetry of Tn, all its columns sum to zero as well).

Lastly, we display a few special instances of the matrix Tn when n = 1,2,3:
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T1 = (0), T2 =

( 1
2 −

1
2

1
2 −

1
2

)
, T3 =

©­«
2
3 −

1
3 −

1
3

− 1
3

2
3 −

1
3

− 1
3 −

1
3

2
3

ª®¬ (1.109)

1.5 Symmetric matrices

Let A ∈ Rn×n be a square matrix. It is called a symmetric matrix if its transpose
coincides with itself, i.e., AT = A. We denote by Sn(R) the collection of all real,
symmetric matrices of size n × n, i.e.,

Sn(R) = {A ∈ Rn×n | AT = A}. (1.110)

Symmetric matrices have many nice properties, for example, all their eigenvalues
are real (there is no complex eigenvalue) and eigenvectors corresponding to different
eigenvalues are not only linearly independent, but also orthogonal to each other. The
following theorem indicates that symmetric matrices are always diagonalizable and
furthermore, they can be diagonalized through orthogonal matrices.

Theorem 1.10 For any symmetric matrix A ∈ Sn(R), there exist an orthogonal
matrix Q = [q1 . . . qn] ∈ R

n×n and a diagonal matrix Λ = diag(λ1, . . . , λn) ∈ R
n×n,

such that
A = QΛQT . (1.111)

This theorem is often called the Spectral Theorem, for example in Textbook [cite].
We omit the proof of this theorem (the interested reader is referred to [cite]) but make
a few comments:

• The factorization of A in (1.111) is the spectral decomposition of A: The λi’s
represent the eigenvalues of A while the qi’s are the associated eigenvectors (with
unit norm and orthogonal to each other).

• Because Q is an orthogonal matrix, A is said to be orthogonally diagonalizable.
• The converse of the theorem is also true, i.e., orthogonally diagonalizablematrices

must be symmetric: If A = QΛQT for some orthogonal matrix Q and diagonal
matrix Λ, then

AT = (QΛQT )T = (QT )TΛTQT = QΛQT = A . (1.112)

• One can rewrite the matrix decomposition A = QΛQT into a sum of rank-1
matrices:

A =
[
q1 . . . qn

] ©­­«
λ1

. . .

λn

ª®®¬

qT

1
...

qn

 =
n∑
i=1

λiqiqT
i (1.113)

For convenience, we often sort the diagonal elements of Λ in decreasing order:

λ1 ≥ λ2 ≥ · · · ≥ λn. (1.114)
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Note that the columns of Q must be rearranged accordingly to match with the
positions of the λi’s.

Example 1.19 Find the spectral decomposition of the matrix A =
(
0 2
2 3

)
.

The matrix A is symmetric, and thus orthogonally diagonalizable. By direct
calculation we obtain the following eigenvalues and eigenvectors:

λ1 = 4, q1 =
1
√

5

(
1
2

)
λ2 = −1, q2 =

1
√

5

(
2
−1

)
Putting them together, we have

A = 1
√

5

(
1 2
2 −1

)
︸       ︷︷       ︸

Q

·

(
4
−1

)
︸  ︷︷  ︸
Λ

·
1
√

5

(
1 2
2 −1

)T
︸         ︷︷         ︸

QT

= 4

( 1√
5

2√
5

) (
1√
5

2√
5

)
+ (−1)

( 2√
5
− 1√

5

) (
2√
5
− 1√

5

)
The spectral theorem is a fundamental result in linear algebra and has many

applications. We will use it to develop the singular value decomposition of general
matrices later in this book. Here we briefly mention its use in defining quadratic
forms.

1.6 Quadratic forms

An important way of using symmetric matrices is to define the so-called quadratic
forms. Given a matrix A ∈ Sn(R), the quadratic form based on A is a function
Q : Rn 7→ R with

Q(x) = xTAx, for all x ∈ Rn . (1.115)

Remark 1.4 When given an expression xTAx where A is not symmetric, we can
rewrite it into the standard form in the definition as follows:

xTAx = 1
2

(
xTAx + (xTAx)T

)
=

1
2

(
xTAx + xTATx

)
= xT · 1

2
(A + AT )︸       ︷︷       ︸
symmetric

· x.

(1.116)
Therefore, we only need to focus on symmetric matrices when studying quadratic
forms.

A quadratic form is a second order polynomial (with no linear or constant term):
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xTAx =
n∑
i=1

n∑
j=1

ai j xi xj . (1.117)

Because of the symmetry assumption on the matrix A, we may also write it as

xTAx =
n∑
i=1

aii x2
i +

∑
1≤i< j≤n

2ai j xi xj . (1.118)

This equation is very useful for getting back and forth between the vector form and
the expanded polynomial. For example, if

A =
(
1 3
3 2

)
, x =

(
x1
x2

)
,

then
Q(x) = xTAx = x2

1 + 2x2
2 + 6x1x2 .

Conversely, if

Q(x) = x2
1 + 2x2

2 + 3x2
3 + 6x1x2 − 4x1x3 + 10x2x3

then

a11 = 1, a22 = 2, a33 = 3,
a12 = a21 = 6/2 = 3, a13 = a31 = −4/2 = −2, a23 = a32 = 10/2 = 5.

Putting them together, we get that

A = ©­«
1 3 −2
3 2 5
−2 5 3

ª®¬ .

One way of using quadratic forms is to define positive definiteness of square
matrices. We present the concept in the next section.

1.7 Positive semidefinite matrices

A symmetricmatrixA ∈ Sn(R) is said to be positive semidefinite if the corresponding
quadratic form is nonnegative everywhere in Rn, that is,

Q(x) = xTAx ≥ 0, for all x ∈ Rn. (1.119)

We denote by Sn
0+(R) the set of all n × n positive semidefinite matrices.

For any A ∈ Sn
0+(R), if the equality holds true only for x = 0 (i.e., xTAx > 0 for

all x , 0), then A is said to be positive definite. The set of all n × n positive definite
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matrices is denoted as Sn
+(R). Clearly, a positive definite matrix is always positive

semidefinite, but no the other way. See Figure 1.15 for an illustration.

Fig. 1.15 Increasingly larger
classes of matrices Sn

+ (R) ⊂
Sn

0+(R) ⊂ Sn(R) ⊂ Rn×n .

Sn
+(R)

Sn
0+(R)

Sn(R)
Rn×n

A symmetric matrix A ∈ Sn(R) is said to be negative definite (resp. semidefinite)
if −A is positive definite (resp. semidefinite). Similarly, we denote by Sn

0−(R) and
Sn
−(R) the sets of negative semidefinite and of negative definitematrices, respectively.
If a symmetric matrix is neither positive semidefinite nor negative semidefinite, then
we say that it is indefinite. The set of indefinite matrices A ∈ Sn(R) can be expressed
as

(
Sn

0+(R) ∪ Sn
0−(R)

)c
.

The following theorem provides a way to check positive definiteness or semidef-
initeness of a symmetric matrix via its eigenvalues.

Theorem 1.11 A symmetric matrix is positive definite (resp. positive semidefinite) if
and only if all of its eigenvalues are strictly positive (resp. nonnegative).

Proof Consider a symmetric matrix A ∈ Sn(R) and its spectral decomposition:
A = QΛQT , where Q = [q1 . . . qn] ∈ R

n×n is orthogonal and Q = diag(λ1, . . . , λn).
For any x ∈ Rn, let y = QTx ∈ Rn. Then

xTAx = xTQΛQTx = yTΛy =
n∑
i=1

λiy
2
i . (1.120)

Clearly, if all λi ≥ 0, then xTAx ≥ 0 for all x and thus A is positive semidefinite. In
the special case that all λi > 0, xTAx = 0 if and only if y = 0 and correspondingly,
x = 0. The completes the proof of the sufficiency part.

To prove the necessary direction, we suppose that A is positive semidefinite but
with a negative eigenvalue λj . Let y = ej and correspondingly, x = Qy = qj , 0. It
follows that

xTAx = yTΛy = λj < 0.

This shows thatA is not positive semidefinite, thus a contraction. The proof is similar
if A is positive definite but with an eigenvalue λi ≤ 0. �

Remark 1.5 For any matrix A ∈ Sn(R), (λ,v) is an eigenpair of A if and only if
(−λ,v) is an eigenpair of −A:
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Av = λv ⇐⇒ (−A)v = (−λ)v (1.121)

This shows that A and −A have completely opposite (in sign) eigenvalues (but the
same eigenvectors). Thus, by the theorem, A is negative definite (resp. negative
semidefinite) if and only if all of its eigenvalues are strictly negative (resp. nonposi-
tive).

Remark 1.6 A matrix is indefinite if and only if it has both positive and negative
eigenvalues. Another equivalent characterization of an indefinite matrix A ∈ Sn(R)
is that it can be written as a sum of two nonzero symmetric matrices, one being
positive semidefinite and the other being negative semidefinite (the proof is left to
Problem):

A = A+ + A−, A+ ∈ Sn
0+(R) − {O}, A− ∈ Sn

0−(R) − {O} (1.122)

We call A+,A− respectively the positive and negative semidefinite components of A.
This theorem implies the following pattern for eigenvalues of a positive semidef-

inite matrix A:
λ1 ≥ λ2 ≥ · · · ≥ λr > 0 = λr+1 = · · · = λn, (1.123)

where r = rank(A). Correspondingly, we may obtain the following reduced form of
the spectral decomposition in (1.113):

A =
r∑
i=1

λiqiqT
i =

[
q1 . . . qr

] ©­­«
λ1

. . .

λr

ª®®¬

qT

1
...

qr

 = QrΛrQT
r (1.124)

where Qr =
[
q1 . . . qr

]
∈ Rn×r is a tall matrix with orthonormal columns, and

Λr = diag(λ1, . . . , λr ) ∈ R
r×r .

Using Theorem 1.11 together with the following two identities:

det(A) = λ1λ2 and tr(A) = λ1 + λ2

where λ1, λ2 are the two eigenvalues of A, we present in Table 1.1 a simple, fast test
based on the determinant and trace to determine the positive definiteness of 2 × 2
matrices. Note, however, that the test is not valid for larger matrices.

det(A) tr(A) positive definiteness sufficient/necessary
+ + A ∈ S2

+(R) both
0 0 or + A ∈ S2

0+(R) only sufficient
+ - A ∈ S2

−(R) both
0 0 or - A ∈ S2

0−(R) only sufficient
- any A < S2

0+(R) ∪ S2
0−(R) only sufficient

Table 1.1 Positive definiteness test for a 2×2 symmetric matrixA based on its rank and determinant



40 1 Matrix Algebra and Computing

Example 1.20 The following are all symmetric matrices

A =
(
1 2
2 5

)
, B =

(
1 2
2 4

)
, C =

(
1 3
3 2

)
.

According to the test in Table 1.1,
• A is positive definite, because det(A) = 1 > 0 and tr(A) = 6. The matrix has two

positive eigenvalues λ1,2 = 3 ± 2
√

2;
• B is positive semidefinite (but not positive definite), because det(A) = 0 and

tr(A) = 5 > 0. The two eigenvalues are λ1 = 5, λ2 = 0;
• C is indefinite, because det(A) = −7 < 0. The matrix has both positive and

negative eigenvalues λ1,2 =
3±
√

37
2 .

The following result is also an simple one but will be needed later when deriving
the matrix singular value decomposition.
Theorem 1.12 For any rectangular matrix A ∈ Rm×n, both AAT ∈ Rm×m and
ATA ∈ Rn×n are square, symmetric, and positive semidefinite.
Proof It is obvious that ATA is square (n × n) and symmetric:

(ATA)T = AT (AT )T = ATA. (1.125)

To show that it is positive semidefinite, consider the associated quadratic form for
any x ∈ Rn:

xT (ATA)x = (xTAT )(Ax) = (Ax)T (Ax) = ‖Ax‖2 ≥ 0. (1.126)

The proof for the other product AAT is similar. �

Remark 1.7 Let A ∈ Rm×n. We discuss when the two positive semidefinite matrices,
AAT ∈ Rm×m and ATA ∈ Rn×n, are positive definite, depending on the shape of the
matrix A:
• m > n (tall matrix): ATA is positive definite if and only if rank(ATA) = n, which

is further equivalent to rank(A) = n (i.e., A is of full column rank). In contrast,
AAT is never positive definite because rank(AAT ) = rank(A) ≤ n < m.

• m < n (long matrix): Similarly, AAT is positive definite if and only if A is of full
row rank (i.e., rank(A) = m). In contrast, ATA is never positive definite because
rank(ATA) = rank(A) ≤ m < n.

• m = n (square matrix): ATA and AAT are (simultaneously) positive definite if
and only if A is nonsingular.

Remark 1.8 A notable result about the two product matrices, i.e., AAT and ATA for
any given matrix A ∈ Rm×n, is that they must have the same positive eigenvalues
(with the same algebraic multiplicities), due to the following result:

λn det(λI − AAT ) = λm det(λI − ATA). (1.127)

Regarding the number zero as an eigenvalue, all of the following cases can occur:
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1. Exactly one of the two matrices AAT ,ATA has a zero eigenvalue.
2. Both AAT and ATA have a zero eigenvalue.
3. None of AAT and ATA has a zero eigenvalue.

In Problem [cite] we ask the reader to give concrete matrix examples in each case.

1.8 Matrix square roots

An interesting aspect of positive semidefinite matrices is that they have square roots
(which are also matrices), just like nonnegative numbers have square roots (which
are still numbers).

Definition 1.1 Let A,R ∈ Sn
0+(R) be two positive semidefinite matrices of the same

size. ThematrixR is called the square root ofA ifA = R2.We denote it byR = A1/2.

Remark 1.9 If A is actually strictly positive definite, then its square root R must be
strictly positive definite because

0 , det(A) = det(R2) = det(R)2 −→ det(R) , 0.

If a positive semidefinite matrix happens to be diagonal, then there is an easy way
to find its square root. Assume a diagonal, positive semidefinite matrix

Λ = diag(λ1, . . . , λn), where λ1, . . . , λn ≥ 0.

Define
Λ1/2 = diag

(
λ

1/2
1 , . . . , λ

1/2
n

)
, (1.128)

which is still diagonal and positive semidefinite. Clearly, Λ1/2Λ1/2 = Λ. This shows
thatΛ1/2 is indeed a square root ofΛ. Note that without the positive semidefiniteness
requirement in the definition of matrix square roots, we can arbitrarily modify the
signs of the diagonals of Λ1/2 without violating the equality condition.

The following theorem presents a general formula for finding the square root of
any positive semidefinite matrix.

Theorem 1.13 Let A ∈ Sn
+(R) be an arbitrary positive semidefinite matrix with

spectral decomposition A = QΛQT , where Q ∈ Rn×n is an orthogonal matrix and
Λ = diag(λ1, . . . , λn) a diagonal matrix with λ1 ≥ · · · ≥ λn ≥ 0. Then A has a
unique matrix square root

R = QΛ1/2QT . (1.129)

Proof First, such definedmatrixR is also positive semidefinite. By direct calculation,

R2 = (QΛ1/2QT )(QΛ1/2QT ) = QΛ1/2Λ1/2︸    ︷︷    ︸
Λ

QT = A.
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This shows that R is a square root of A. It remains to show that it is the only square
root of A.

Suppose that a positive semidefinite matrix T = PSPT , for some orthogonal
matrix P ∈ Rn×n and diagonal matrix S = diag(s1, . . . , sn) with s1 ≥ · · · ≥ sn ≥ 0,
is another square root of A. That is,

A = T2 = PS2PT .

Observe that S2 must contain the eigenvalues of A sorted in decreasing order.
Therefore, we conclude that S2 = Λ, or equivalently, S = Λ1/2. It follows that

QΛQT = R2 = A = T2 = PΛPT ,

and further that
PTQΛ = ΛPTQ.

Let U = PTQ, which is also an orthogonal matrix. Then the last equation can be
rewritten as

UΛ = ΛU, or in entrywise form, ui jλj = λiui j, for all i, j .

This shows that ui j = 0 whenever λi , λj . It follows that

ui jλ
1/2
j = λ

1/2
i ui j, for all i, j, or in matrix form, UΛ1/2 = Λ1/2U.

Consequently, using Q = PU, we get that

R = (PU)Λ1/2(PU)T

= P(UΛ1/2)UTPT

= P(Λ1/2U)UTPT

= PΛ1/2PT

= T.

This thus completes the proof of uniqueness of matrix square roots. �

Remark 1.10 For a positive definite matrix A ∈ Sn
+(R), we can also define the

reciprocal square root A−1/2 (just like x−1/2 for a positive real number x):

A−1/2 =
(
A1/2

)−1
. (1.130)

Let A = QΛQT , where Q is an orthogonal matrix and Λ = diag(λ1, . . . , λn) with
λ1 ≥ · · · ≥ λn > 0. Then we have

A−1/2 = QΛ−1/2QT , where Λ−1/2 = diag
(
λ
−1/2
1 , . . . , λ

−1/2
n

)
. (1.131)

Clearly, like A and A1/2, A−1/2 is also a positive definite matrix.
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Remark 1.11 Using the reduced form of the eigendecomposition of A in (1.124),
we obtain the following reduced form for the square root of a positive semidefinite
matrix A:

A = QrΛrQT
r −→ A1/2 = QrΛ

1/2
r QT

r . (1.132)

This formula is more efficient for computing the matrix square roots, as it only
requires computing the eigenvectors corresponding to the positive eigenvalues.

Example 1.21 Let A =
(
1 2
2 4

)
, which is positive semidefinite because λ1 = 5, λ2 = 0.

To find thematrix square root ofA, we need to first find its orthogonal diagonalization
(in reduced form):

A = Q1Λ1QT
1 =

( 1√
5

2√
5

) (
5
) (

1√
5

2√
5

)
.

It follows that

A = Q1Λ
1/2
1 QT

1 =

( 1√
5

2√
5

) (√
5
) (

1√
5

2√
5

)
=

( 1√
5

2√
5

2√
5

4√
5

)
.

The reader is asked to verify that the square of this matrix is A that is given at the
beginning of the question.

Example 1.22 Let A =
(
2 3
3 5

)
and B =

(
1 1
1 2

)
. It can be directly verified that B2 = A.

Thus, B is the unique matrix square root of A. Moreover, since A is positive definite,
its reciprocal square root exists and is

A−1/2 = B−1 =

(
2 −1
−1 1

)
.

1.9 The generalized eigenvalue problem

Let A,B ∈ Rn×n be two square matrices of the same size. We say that λ ∈ R is a
generalized eigenvalue of (A,B) if there exists a nonzero vector v ∈ Rn such that

Av = λBv. (1.133)

In this case, v is called a generalized eigenvector of (A,B) corresponding to λ. In
some cases, we say for short that (λ,v) is generalized eigenpair of (A,B).

In the above definition, if we let B = I, then the generalized eigenvalues of (A,B)
would reduce to the ordinary eigenvalues of A:

Av = λv.
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This shows that the generalized eigenvalue problem is indeed a generalization of the
ordinary eigenvalue problem.

Wemention two other special cases of the generalized eigenvalue problem (1.133),
each of which also reduces to an ordinary eigenvalue problem:

• If the matrix B happens to be nonsingular, then (1.133) can be rewritten as

(B−1A)v = λv. (1.134)

This shows that the generalized eigenvalue λ of (A,B) is an ordinary eigenvalue
of the matrix B−1A, with corresponding eigenvector.

• If the matrix A is nonsingular, since v , 0, we must have λ , 0 (otherwise we
would have Av = λBv = 0, which is a contradiction). In this case, (1.133) can be
rewritten as

(A−1B)v = (1/λ)v. (1.135)

This shows that 1/λ is an ordinary eigenvalue for the matrix A−1B, with corre-
sponding eigenvector v.
Now, let us rewrite (1.133) as

(A − λB)v = 0. (1.136)

Note that there exists a nonzero solution v if and only if A− λB is singular. We have
thus obtained that λ is a generalized eigenvalue of (A,B) if and only if

det(A − λB) = 0. (1.137)

Let pA,B(λ) = det(A − λB), which is also a polynomial in λ. We call pA,B(λ) the
characteristic polynomial of (A,B).

We discuss the number of (real) generalized eigenvalues that two n × n matrices
(A,B) may have in general. Recall that for the square matrix A ∈ Rn×n alone, the
characteristic polynomial pA(λ) must be of order-n and thus may have no more than
n real roots. Accordingly, an n × n matrix may have zero to n eigenvalues. However,
for a pair of n × n matrices (A,B), the characteristic polynomial pA,B(λ) may have
an order less than n. In the special case when the order is zero (i.e., pA,B(λ) = 0 for
all λ ∈ R), the matrix pair have infinitely many generalized eigenvalues!

Example 1.23 Let

A =
(
1 2
2 4

)
, B =

(
1 1
1 1

)
.

To find the generalized eigenvalues of (A,B), compute

det(A − λB) =
����1 − λ 2 − λ
2 − λ 4 − λ

���� = (1 − λ)(4 − λ) − (2 − λ)2 = −λ.
Thus, (A,B) has a generalized eigenvalue of λ = 0, with corresponding generalized
eigenvectors
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0 = (A − 0 · B)v = Av −→ v = k
(
−2
1

)
, k ∈ R.

Example 1.24 Let

A =
(
1 2
2 4

)
, B =

(
1 2
3 6

)
.

To find the generalized eigenvalues of (A,B), compute

det(A − λB) =
���� 1 − λ 2 − 2λ
2 − 3λ 4 − 6λ

���� = (1 − λ)(4 − 6λ) − (2 − 2λ)(2 − 3λ) = 0.

Thus, any scalar λ is a generalized eigenvalue of (A,B). This pair of matrices has
infinitely many generalized eigenvalues!

For an arbitrary generalized eigenvalue λ ∈ R, we find its corresponding gener-
alized eigenvector as follows:

0 = (A − λ · B)v =
(

1 − λ 2 − 2λ
2 − 3λ 4 − 6λ

)
v −→ v = k

(
−2
1

)
, k ∈ R.

This indicates that all the generalized eigenvalues share the same generalized eigen-
vector!

Lastly, we mention an important class of generalized eigenvalue problems where
A ∈ Sn(R) is symmetric and B ∈ Sn

+(R) is positive definite. Such problems, called
generalized symmetric-definite eigenvalue problems, have very nice properties and
also occur a lot in applications.
Theorem 1.14 For any two matrices A ∈ Sn(R) and B ∈ Sn

+(R), the generalized
eigenvalue problem Av = λBv has n real eigenvalues λ1, . . . , λn ∈ R with linearly
independent generalized eigenvectors v1, . . . ,vn ∈ Rn which can be normalized such
that

vTi Bvj = δi j, for all 1 ≤ i, j ≤ n.

Proof For any such given matrices A,B, consider the equation Av = λBv where
λ ∈ R and v ∈ Rn are the unknowns. Since B is positive definite, there exists a
unique square root B1/2 which is a positive definite matrix such that B1/2 ·B1/2 = B.
Let u = B1/2v. Then v = B−1/2u, where B−1/2 = (B1/2)−1 is also positive definite.
Rewrite the equation in u to get that

A(B−1/2u) = λB(B−1/2u) = λB1/2u

and further that
(B−1/2AB−1/2)u = λu.

This shows that (λ,u)must be an eigenpair for Ã = B−1/2AB−1/2 ∈ Rn×n, which is a
symmetric matrix. By the Spectral Theorem, there exist n orthonormal eigenvectors
u1, . . . ,un ∈ R

n, corresponding to eigenvalues λ1, . . . , λn ∈ R, such that

B−1/2AB−1/2ui = λiui, i = 1, . . . ,n
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or equivalently,
A(B−1/2ui) = λiB(B−1/2ui), i = 1, . . . ,n

This shows that λ1, . . . , λn are the generalized eigenvalues of (A,B)with correspond-
ing generalized eigenvectors

vi = B−1/2ui, for i = 1, . . . ,n (1.138)

Lastly, since u1, . . . ,un are orthonormal vectors, the generalized eigenvectors
v1, . . . ,vn must be linearly independent (because they only differ from the ui’s
by a nonsingular matrix factor B−1/2). Additionally, we have

δi j = uT
i uj = (B1/2vi)T (B1/2vj) = vTi Bvj, for all i, j .

This thus completes the proof. �

The proof of the theorem implies that the generalized eigenvalues of (A,B), where
A ∈ Sn(R) and B ∈ Sn

+(R), are the same as the eigenvalues of the symmetric matrix
B−1/2AB−1/2 ∈ Sn(R).

Since B is invertible, we may rewrite the generalized symmetric-definite eigen-
value problem as an ordinary eigenvalue problem

Av = λBv ⇐⇒ B−1Av = λv. (1.139)

This shows that the generalized eigenvalues of (A,B) are also the eigenvalues of
B−1A.

There are thus two important matrices involved in the generalized symmetric-
definite eigenvalue problem: B−1/2AB−1/2 and B−1A. The former is symmetric but
the latter is not in general. It turns out that the two matrices are similar to each other
(this is why their eigenvalues are both the same as the generalized eigenvalues of
(A,B)):

B−1A = B−1/2 · (B−1/2AB−1/2) · B1/2 (1.140)

In sum, in a generalized symmetric-definite eigenvalue problem (A,B), the fol-
lowing three are always the same:

• Generalized eigenvalues of (A,B);
• Eigenvalues of B−1/2AB−1/2 (which is a symmetric matrix);
• Eigenvalues of B−1A;

Note that regarding eigenvectors, we only have that the generalized eigenvectors
of (A,B) are the same as the eigenvectors B−1A, as indicated by (1.139). However, as
shown in (1.138), the generalized eigenvectors of (A,B) differ from the eigenvectors
of B−1/2AB−1/2 by a fixed matrix factor.

There is also a direct way to relate the eigenvectors of B−1A and the eigenvectors
of B−1/2AB−1/2:

B−1Av = λv ⇐⇒ (B−1/2AB−1/2)(B1/2v) = λ(B1/2v). (1.141)
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This equation shows that v is an eigenvector of B−1A (and also a generalized eigen-
vector of (A,B)) if and only if B1/2v is an eigenvector of B−1/2AB−1/2.

We derive next the matrix representation of the result in the preceding theorem,
which can provide more insights. Let Λ = diag(λ1, . . . , λn) and V = [v1, . . . ,vn],
which contain the generalized eigenvalues and eigenvectors of (A,B), respectively.
Then

vTi Bvj = δi j −→ VTBV = I (1.142)

and

A[v1, . . . ,vn] = [Bv1, . . . ,Bvn]
©­­«
λ1

. . .

λn

ª®®¬ −→ AV = BVΛ. (1.143)

Furthermore, we may obtain that

VTAV = VT (AV) = VT (BVΛ) = (VTBV)Λ = IΛ = Λ. (1.144)

This indicates that the generalized eigenvectors matrix V simultaneously diagonal-
izes both A and B, but for different purposes:
• Diagonalization of A is for the derivation of the generalized eigenvalues in Λ;
• Diagonalization of B is for the normalization of the generalized eigenvectors in

V.

We summarize these matrix representations in the following theorem.

Theorem 1.15 For any symmetric matrix A ∈ Sn(R) and positive definite matrix
B ∈ Sn

+(R), there exist a diagonal matrix Λ ∈ Rn×n and an invertible matrix
V ∈ Rn×n, such that

VTAV = Λ, VTBV = I, and AV = BVΛ. (1.145)

In particular, Λ and V contain the generalized eigenvalues and eigenvectors of
(A,B), respectively.

Remark 1.12 The generalized eigenvalue problems can be easily solved inMATLAB:

• E = eig(A,B) produces a column vector E containing the generalized eigenvalues
of square matrices A and B.

• [V,D] = eig(A,B) produces a diagonal matrix D of generalized eigenvalues and
a full matrix V whose columns are the corresponding eigenvectors.

Example 1.25 Let A =
(
2 3
3 2

)
and B =

(
2 3
3 5

)
, the former being symmetric and the

latter positive definite. Since A,B are only of size 2 × 2, we find their generalized
eigenvalues and eigenvectors are ordinary eigenvalues and eigenvectors of

B−1A =
(

5 −3
−3 2

) (
2 3
3 2

)
=

(
1 9
0 −5

)
.
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By direct calculation, this matrix has two distinct eigenvalues and corresponding
eigenvectors:

λ1 = 1, v1 =

(
1
0

)
, λ2 = −5, v2 =

(
3
−2

)
.

Letting

V = [v1 v2] =

(
1 3
0 −2

)
, and Λ =

(
1
−5

)
we must have AV = BVΛ. However, the arbitrary scaling used in v1,v2 do not
guarantee VTBV = I (even if we had normalized v2 to have unit length). We
examine

VTBV =
(
1 3
0 −2

)T (
2 3
3 5

) (
1 3
0 −2

)
=

(
2

2

)
= 2I.

An easy fix is to normalize V by 1√
2
to have

Ṽ = 1
√

2
V =

(
1√
2

3√
2

0 −
√

2

)
.

The reader can verify that with such a choice of generalized eigenvectors, we now
have ṼTBṼ = I, besides AṼ = BṼΛ, and thus also ṼTAṼ = Λ.

Problems

1. Let A = uvT , where u,v ∈ Rn. Show that

tr(A) = u · v. (1.146)

2. Show that for any two matrices of the same size, A,B ∈ Rm×n,

rank(A + B) ≤ rank(A) + rank(B). (1.147)

3. Give an example of a matrix A ∈ Rm×n in each of the following cases:

a. Exactly one of the two matrices AAT ,ATA has a zero eigenvalue.
b. Both AAT and ATA have a zero eigenvalue.
c. None of AAT and ATA has a zero eigenvalue.

4. Show that A ∈ Rn×n is idempotent if and only if I − A is idempotent.
5. Show that Jn is positive semidefinite and then find its matrix square root.
6. Let a symmetricmatrixA ∈ Sn(R) be indefinite. Show that there exist two nonzero

matrices, A+ ∈ Sn
0+(R) − {O},A− ∈ Sn

−(R) − {O} such that

A = A+ + A−. (1.148)
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Hint: consider the spectral decomposition of A in rank-1 form.
7. In Example 1.25 we computed the generalized eigenvalues and eigenvectors of
(A,B) as the ordinary eigenvalues and eigenvectors ofB−1A.We had to rescale the
eigenvectors in some way to satisfy VBV = I. Here, you are asked to use the other
matrix B−1/2AB−1/2 and follow the procedure outlined in the proof of Theorem
1.14 to redo the problem. That is, first find the eigenvectors of B−1/2AB−1/2

and normalize each of them to have unit length, and then obtain the generalized
eigenvectors of (A,B) using (1.138). Such obtained generalized eigenvectors must
automatically satisfy VBV = I and thus require no further normalization.

8. Theorem 1.12 states that the product of any matrix with its transpose (in either
order) is positive semidefinite. Here you are asked to prove something opposite.
Let B ∈ Rn×n be a positive semidefinite matrix of rank r . Show that there exists
a matrix A ∈ Rn×r such that B = AAT . Hint: Consider the reduced form of the
spectral decomposition of B.

9. Let
A =

(
0 1
−1 0

)
, B =

(
1 0
0 2

)
.

Show that (A,B) has no real generalized eigenvalues. Find also the corresponding
generalized eigenvectors.

10. Let
A =

(
1 2
2 4

)
, B =

(
1 1
2 3

)
.

Show that (A,B) has two real generalized eigenvalues. Find also the corresponding
generalized eigenvectors.


