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2
) = A = y|I* + Allx]l;. (2.17)

Such a result will be needed when we get to the regression chapter.
Lastly, we mention a useful fact that the a-sublevel sets of a convex function must
be convex sets.

Theorem 2.5 Let f : Q C R" — R be a convex function. For any @ € R, So(f) is a
convex set in R".

Proof Suppose x,y € S,(f), thatis f(x) < @ and f(y) < a. Forany ¢ € (0,1),

fax+(1=-0y)<tfx)+(1-0t)f(y) <ta+(1-Ha = a.
Thus, tx + (1 — 1)y € So(f). This shows that S, (f) is indeed a convex set. O

Example 2.5 The following are all convex sets in R" because they are sublevel sets
of convex functions:

* {y-balls: {x e R" : ||x||, <r} where p > 1 and r > 0;

 Half spaces: {x € R"” : a’x < b} wherea # 0 € R" and b € R;

+ Ellipsoids (centered at the origin): {x € R” : x Ax < b} where A € R™" is a
positive definite matrix and b € R.

See Figure 2.7.

aTx <b

Fig. 2.7 Convex sets in R™: a solid ¢;-ball (left), a half-space (middle), and an ellipsoid (right).

2.3 Derivatives of a function of several variables
2.3.1 Basic concepts

Let Q C R" be a set and f : Q +— R a function over the set. The function f is
said to be differentiable at an interior point xo € Q if all the partial derivatives of
f, {% 11 =1,...,n}, exist at x¢. If additionally all the partial derivatives of f are
continuous at X, then f is said to be continuously differentiable at the point.
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Similarly, if all the second-order partial derivatives of f, { o 1 <i,j<n}
exist at an interior point Xo € Q, we say that f is twice differentiable at xq. If
additionally all the second-order partial derivatives of f are continuous at X, then
f is said to be twice continuously differentiable at the point.

Suppose that f : Q — R is differentiable in all or a nonempty subset of the
interior of Q. The gradient of f is a vector field (i.e., vector-valued function) whose

components are the partial derivatives of f:

> f
Xj

T
of of ) . (2.18)

Vf:QCR'+—R",  with Vf= (a_""’a
X1 Xn

When given a specific point p € Q° at which f is differentiable, we may evaluate
the gradient V f at p to obtain a gradient vector:

T
o1 P)... -,g—f(p)) eR". (2.19)

0x1 X

Vfp) = (

On the other hand, if any of the partial derivatives is undefined at p, we say that the
gradient of the function f does not exist at the location p.

In the cases where the expression of the function f contains several parameters
besides the variable x, e.g., f(x) = al'x where a is a constant vector regarded as the
parameter of the function, we denote the gradient of f by Vy f or % instead (to
indicate clearly that the partial derivatives are taken only with respect to x).

If V f(p) # 0 for some interior point p € €, then at that point the gradient vector
is perpendicular to the level set L,(f) in R", where @ = f(p). That is, Vf(p) is
perpendicular to the tangent plane L, (f) at the point p. Figure 2.8 displays a function
of two variables and an a-level set (contour curve) where @ = f(p). The gradient
at p is perpendicular to the contour curve at location p, which means that V f(p) is
perpendicular to the tangent line of the curve at p. Additionally, the direction of the
gradient V f(p) is the direction in which the function f increases the most rapidly
from the point p, and the magnitude of V f(p) is the rate of increase in that direction.
On the contrary, —V f(p) is the direction of the fastest decrease of f at location p.

We say that a point in the domain of the given function f, Xg € Q, is a critical
point of fif V f(xp) = 0 (such as the point x in Figure 2.8), or the gradient does not
exist at Xo. The critical values are the values of the function f at the critical points.

For any function f : Q +— R that is second-order differentiable with respect to
each variable x; in all or the same part of Q°, the Hessian of f, denoted as V2 f,isa
matrix-valued function whose components are the second-order partial derivatives

of f:
2
V2f=( f ) )
0x;0x; 1<i,j<n

Similarly, when the function f has several parameters besides the variables in x, we
2
denote the Hessian of f by V,z( f or % instead.

(2.20)



60 2 Optimization of multivariate functions

Vf(x0) =0

Fig. 2.8 The gradient vector
at the point p is the direction of
fastest increase of the function
f from the point. The other
labeled point, X, is a critical 9]

point of f where the gradient

vector vanishes. fx)=a

Given a point p € Q° at which f is twice differentiable, we may evaluate the
components of the Hessian at p to obtain the Hessian matrix of f at p:

o f
6xi6xj

Vi f(p) = ( (p)) e R, (2.21)

If all the second-order partial derivatives of the function f are continuous at p, then

o f o2 f
= , foralli#j 2.22
Ao, p) o0 (p). foralli#j (2.22)

In this case, V2 f(p) is a symmetric matrix.
Example 2.6 Let f(x1,x3) = xl2 + 2x§ +2x1 x, which is a function on R2. The gradient

of fis
ng _ 2xl+ZXQ
4x2+2x1 ’

Vf=

ox;

The gradient vector at x = 1 is

Vf(l) B (ii; i gi?) xp=x2=1 ) (2) ‘
The Hessian of f is constant everywhere in R?
T

Ox20x1  9x3

Lastly, we mention the notion of the Jacobian of a vector-valued function (such
as the gradient function). Let f : Q C R"” — R™ be a vector-valued function with
differentiable component functions f;, i.e.,
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fi(x)
f(x) = : |, forallx e Q. (2.23)
S (x)
The Jacobian of f is a matrix-valued function
. n nxm . af]
Vf: QCR" > R™™, with  (Vf);; = P 2.24)
X;

Using this terminology, the Hessian of a scalar-valued function f : Q C R" —» R is
just the Jacobian of the gradient of f, namely,

VZif =vV(V). (2.25)

Given a point p € Q at which all f;’s are differentiable, we can evaluate every
component of the Jacobian Vf at p to obtain the Jacobian matrix of f at p:

af;

Vi(p) = ( B,

(p)) . (2.26)

sisn, 1)<

2.3.2 Useful formulas

Next, we derive a few formulas concerning the gradients and Hessians of functions
of x like x Ax and ||x||?. These formulas are frequently needed in the derivation of
statistics and machine learning algorithms.

Theorem 2.6 For any fixed symmetric matrix A € S"(R), fixed matrix B € R™",
and fixed vector a € R", we have

9 T —
&(a X)=a
2l = 2x

i(XTAX) = 2Ax
ox

aﬁ(annz) = 2B"Bx
X

Proof The top two identities can be verified by direct calculation of the kth partial
derivative: Foreach 1 < k < n:
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;Tk (||X||2) - Oixk (an le) = 2xk.

i=1

For the third identity involving x” Ax,

(9 6 n n
T
—(x Ax) = — i Xi
an A= 2 ,21 aijxix;
= i Z AgiXeXj + Z Ajk Xi X + akkx2
an ( J J ' k
Jj#k ik
= Z agjxj + Z aiXi + 2ari Xk
j#k itk
= Z AgjXj + Z Xidik
j=1 i=1
= Agx + X! ag
=2A;x (since A is symmetric)
Collectively, we have
5 (%I(XTAX) 2A,x
a—(xTAx) = : = : = 2Ax
X : :
%(XTAX) 2A,x
The last identity can then be verified by writing
IBx|I* = (Bx)" (Bx) = x” (B B)x
and applying the third identity. O

The next theorem concerns the Hessians of functions like x” Ax and ||x]|>.

Theorem 2.7 For any fixed symmetric matrix A € S"(R), fixed matrix B € R™"
and fixed vector a € R", we have
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2

T(aTX) =0

82

S (xI) =21

32
ﬁ(xTAx) =2A

X
62 2 T
—(IBx|) = 2B"B

Proof The first three results can be proved by using the corresponding partial deriva-
tives derived in the proof of the preceding theorem: For any 1 < k,¢ < n,

0 0 T | o (92 -
i __9 -0 o0 _
Oxe | Ox (a X)i 0xy (ar) = Ix2 (@'x)=0
0 0 5 | _ 0 3 32 ~
o [(?xk (Ix17) | = 57 @) = 2600 — (I =21
0 o 5. .| 0 02 .
0xp | Oxk t X)_ 0xe (24x) ke - Ix2 (x" Ax)

The last result can be proved similarly by writing || Bx||> = x/ (B”B)x and applying
the third result. O

Lastly, we introduce the gradient of a function f : R™" + R whose inputs
are matrices (regarded as vectors). That is, for any X € R™", we think of f(X) as
f(vec(X)) and compute the gradient of f with respect to each component of vec(X),
but we will represent the gradient in a matrix form consistent in size and order with
X.

Formally, the gradient of a function f : X € R"™" — f(X) € R is a matrix-
valued function Vf : R™" - R™ " whose components are the partial derivatives
of f with respect to each input variable x;;:

w2

2.27
o (2.27)

)ISiSm, 1<j<n

Other kinds of notation for the gradient are Vx f and %
For example, let

X11 X
X = ( 1 12) s and f(X)= x121 + Xop — X12X21.

X21 X22
Then
7} J
af _ W{]WJL _ (2x11 x2
0X or of xpp 1 ]°
0x31 Ox2
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We are now ready to present the following results.

Theorem 2.8 Ler X € R™" be a matrix of mn variables. For any fixed matrix
A € R™" and fixed symmetric matrix B € R™ ™, we have

9 T _ 0 T _
X UTATX)=A and oo u(XBX) = 2BX (2.28)

In particular, if B = 1, then the second identity reduces to

0 T
ax TXTX) = (2.29)

Proof We just need to verify the entrywise partial derivatives. For any integers
1<i<mandl <j<n,

0 T T 6 LA B 0 B
@tr(A X) = . kZ(A Xk = P ; ;askxsk = @(aijxij) = ajj.

The completes the proof of the first identity.
For any integers | <i <mand1<j <n,

W tr(X"BX) = — Z(XTBX)kk = Z (Z Z kawafk)

2 Yij = ”klsltl

Observe that the term-by-term partial derivatives are zero unless k = j. Thus,

9 . 9 m m
Wij tr(X BX) = W z:; Z; T,x,j.

To proceed further, we divide the double sum into four terms depending on whether
each of s,7 is equal to i:

0
Wtr(XTBX) buxl]"' Z xlj itXej + Z Xsj Slxlj+zzx5j stXtj

Y t=1,t#i s=1,s#i0 S#EL I

= 2byix;j + Z birxij + Z Xyjbsi +0

t=1,t#i s=1,5#i

m m
= Z bitxtj + Z xsjbsi
t=1 s=1

= (BX);; + (B"X);;
= 2(BX);; (by using the symmetry of B).

This thus completes the proof of the second identity. O



