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f (x) = ‖Ax − y‖2 + λ‖x‖pp . (2.17)

Such a result will be needed when we get to the regression chapter.
Lastly, we mention a useful fact that the α-sublevel sets of a convex function must

be convex sets.

Theorem 2.5 Let f : Ω ⊆ Rn 7→ R be a convex function. For any α ∈ R, Sα( f ) is a
convex set in Rn.

Proof Suppose x,y ∈ Sα( f ), that is f (x) ≤ α and f (y) ≤ α. For any t ∈ (0,1),

f (tx + (1 − t)y) ≤ t f (x) + (1 − t) f (y) ≤ tα + (1 − t)α = α.

Thus, tx + (1 − t)y ∈ Sα( f ). This shows that Sα( f ) is indeed a convex set. �

Example 2.5 The following are all convex sets in Rn because they are sublevel sets
of convex functions:

• `p-balls: {x ∈ Rn : ‖x‖p ≤ r} where p ≥ 1 and r > 0;
• Half spaces: {x ∈ Rn : aTx ≤ b} where a , 0 ∈ Rn and b ∈ R;
• Ellipsoids (centered at the origin): {x ∈ Rn : xTAx ≤ b} where A ∈ Rn×n is a

positive definite matrix and b ∈ R.

See Figure 2.7.

aTx ≤ b xTAx ≤ b‖x‖1 ≤ b

Fig. 2.7 Convex sets in Rn : a solid `1-ball (left), a half-space (middle), and an ellipsoid (right).

2.3 Derivatives of a function of several variables

2.3.1 Basic concepts

Let Ω ⊆ Rn be a set and f : Ω 7→ R a function over the set. The function f is
said to be differentiable at an interior point x0 ∈ Ω if all the partial derivatives of
f , { ∂ f∂xi : i = 1, . . . ,n}, exist at x0. If additionally all the partial derivatives of f are
continuous at x0, then f is said to be continuously differentiable at the point.
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Similarly, if all the second-order partial derivatives of f , { ∂2 f
∂xi∂x j

: 1 ≤ i, j ≤ n},
exist at an interior point x0 ∈ Ω, we say that f is twice differentiable at x0. If
additionally all the second-order partial derivatives of f are continuous at x0, then
f is said to be twice continuously differentiable at the point.

Suppose that f : Ω 7→ R is differentiable in all or a nonempty subset of the
interior of Ω. The gradient of f is a vector field (i.e., vector-valued function) whose
components are the partial derivatives of f :

∇ f : Ω ⊆ Rn 7−→ Rn, with ∇ f =
(
∂ f
∂x1

, . . . ,
∂ f
∂xn

)T
. (2.18)

When given a specific point p ∈ Ωo at which f is differentiable, we may evaluate
the gradient ∇ f at p to obtain a gradient vector:

∇ f (p) =
(
∂ f
∂x1
(p), . . . , ∂ f

∂xn
(p)

)T
∈ Rn. (2.19)

On the other hand, if any of the partial derivatives is undefined at p, we say that the
gradient of the function f does not exist at the location p.

In the cases where the expression of the function f contains several parameters
besides the variable x, e.g., f (x) = aTx where a is a constant vector regarded as the
parameter of the function, we denote the gradient of f by ∇x f or ∂ f

∂x instead (to
indicate clearly that the partial derivatives are taken only with respect to x).

If ∇ f (p) , 0 for some interior point p ∈ Ω, then at that point the gradient vector
is perpendicular to the level set Lα( f ) in Rn, where α = f (p). That is, ∇ f (p) is
perpendicular to the tangent plane Lα( f ) at the point p. Figure 2.8 displays a function
of two variables and an α-level set (contour curve) where α = f (p). The gradient
at p is perpendicular to the contour curve at location p, which means that ∇ f (p) is
perpendicular to the tangent line of the curve at p. Additionally, the direction of the
gradient ∇ f (p) is the direction in which the function f increases the most rapidly
from the point p, and the magnitude of ∇ f (p) is the rate of increase in that direction.
On the contrary, −∇ f (p) is the direction of the fastest decrease of f at location p.

We say that a point in the domain of the given function f , x0 ∈ Ω, is a critical
point of f if ∇ f (x0) = 0 (such as the point x0 in Figure 2.8), or the gradient does not
exist at x0. The critical values are the values of the function f at the critical points.

For any function f : Ω 7−→ R that is second-order differentiable with respect to
each variable xi in all or the same part of Ωo, the Hessian of f , denoted as ∇2 f , is a
matrix-valued function whose components are the second-order partial derivatives
of f :

∇2 f =
(
∂2 f

∂xi∂xj

)
1≤i, j≤n

. (2.20)

Similarly, when the function f has several parameters besides the variables in x, we
denote the Hessian of f by ∇2

x f or ∂
2 f
∂x2 instead.
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Fig. 2.8 The gradient vector
at the point p is the direction of
fastest increase of the function
f from the point. The other
labeled point, x0, is a critical
point of f where the gradient
vector vanishes.
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Given a point p ∈ Ωo at which f is twice differentiable, we may evaluate the
components of the Hessian at p to obtain the Hessian matrix of f at p:

∇2 f (p) =
(
∂2 f

∂xi∂xj
(p)

)
∈ Rn×n. (2.21)

If all the second-order partial derivatives of the function f are continuous at p, then

∂2 f
∂xi∂xj

(p) = ∂2 f
∂xj∂xi

(p), for all i , j (2.22)

In this case, ∇2 f (p) is a symmetric matrix.

Example 2.6 Let f (x1, x2) = x2
1+2x2

2+2x1x2 which is a function onR2. The gradient
of f is

∇ f =

(
∂ f
∂x1
∂ f
∂x2

)
=

(
2x1 + 2x2
4x2 + 2x1

)
.

The gradient vector at x = 1 is

∇ f (1) =
(
2x1 + 2x2
4x2 + 2x1

)����
x1=x2=1

=

(
4
6

)
.

The Hessian of f is constant everywhere in R2

∇2 f = ©­«
∂2 f

∂x2
1

∂2 f
∂x1∂x2

∂2 f
∂x2∂x1

∂2 f

∂x2
2

ª®¬ =
(
2 2
2 4

)
.

Lastly, we mention the notion of the Jacobian of a vector-valued function (such
as the gradient function). Let f : Ω ⊆ Rn 7→ Rm be a vector-valued function with
differentiable component functions fi , i.e.,



2.3 Derivatives of a function of several variables 61

f(x) =
©­­«

f1(x)
...

fm(x)

ª®®¬ , for all x ∈ Ω. (2.23)

The Jacobian of f is a matrix-valued function

∇f : Ω ⊆ Rn 7→ Rn×m, with (∇f)i j =
∂ fj
∂xi

(2.24)

Using this terminology, the Hessian of a scalar-valued function f : Ω ⊆ Rn 7→ R is
just the Jacobian of the gradient of f , namely,

∇2 f = ∇(∇ f ). (2.25)

Given a point p ∈ Ω at which all fi’s are differentiable, we can evaluate every
component of the Jacobian ∇f at p to obtain the Jacobian matrix of f at p:

∇f(p) =
(
∂ fj
∂xi
(p)

)
1≤i≤n, 1≤ j≤m

. (2.26)

2.3.2 Useful formulas

Next, we derive a few formulas concerning the gradients and Hessians of functions
of x like xTAx and ‖x‖2. These formulas are frequently needed in the derivation of
statistics and machine learning algorithms.

Theorem 2.6 For any fixed symmetric matrix A ∈ Sn(R), fixed matrix B ∈ Rm×n,
and fixed vector a ∈ Rn, we have

∂

∂x (a
Tx) = a

∂

∂x (‖x‖
2) = 2x

∂

∂x (x
TAx) = 2Ax

∂

∂x (‖Bx‖2) = 2BTBx

Proof The top two identities can be verified by direct calculation of the kth partial
derivative: For each 1 ≤ k ≤ n:
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∂

∂xk

(
aTx

)
=

∂

∂xk

(
n∑
i=1

ai xi

)
= ak

∂

∂xk

(
‖x‖2

)
=

∂

∂xk

(
n∑
i=1

x2
i

)
= 2xk .

For the third identity involving xTAx,

∂

∂xk
(xTAx) = ∂

∂xk
©­«

n∑
i=1

n∑
j=1

ai j xi xj
ª®¬

=
∂

∂xk
©­«
∑
j,k

ak j xk xj +
∑
i,k

aik xi xk + akk x2
k

ª®¬
=

∑
j,k

ak j xj +
∑
i,k

aik xi + 2akk xk

=

n∑
j=1

ak j xj +
n∑
i=1

xiaik

= Akx + xTak
= 2Akx (since A is symmetric)

Collectively, we have

∂

∂x (x
TAx) =


∂
∂x1
(xTAx)
...

∂
∂xn
(xTAx)

 =

2A1x
...

2Anx

 = 2Ax

The last identity can then be verified by writing

‖Bx‖2 = (Bx)T (Bx) = xT (BTB)x

and applying the third identity. �

The next theorem concerns the Hessians of functions like xTAx and ‖x‖2.

Theorem 2.7 For any fixed symmetric matrix A ∈ Sn(R), fixed matrix B ∈ Rm×n
and fixed vector a ∈ Rn, we have
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∂2

∂x2 (a
Tx) = O

∂2

∂x2 (‖x‖
2) = 2I

∂2

∂x2 (x
TAx) = 2A

∂2

∂x2 (‖Bx‖2) = 2BTB

Proof The first three results can be proved by using the corresponding partial deriva-
tives derived in the proof of the preceding theorem: For any 1 ≤ k, ` ≤ n,

∂

∂x`

[
∂

∂xk

(
aTx

)]
=

∂

∂x`
(ak) = 0 =⇒

∂2

∂x2 (a
Tx) = O

∂

∂x`

[
∂

∂xk

(
‖x‖2

)]
=

∂

∂x`
(2xk) = 2δk` =⇒

∂2

∂x2 (‖x‖
2) = 2I

∂

∂x`

[
∂

∂xk
(xTAx)

]
=

∂

∂x`
(2Akx) = 2ak` =⇒

∂2

∂x2 (x
TAx) = 2A

The last result can be proved similarly by writing ‖Bx‖2 = xT (BTB)x and applying
the third result. �

Lastly, we introduce the gradient of a function f : Rm×n 7→ R whose inputs
are matrices (regarded as vectors). That is, for any X ∈ Rm×n, we think of f (X) as
f (vec(X)) and compute the gradient of f with respect to each component of vec(X),
but we will represent the gradient in a matrix form consistent in size and order with
X.

Formally, the gradient of a function f : X ∈ Rm×n 7→ f (X) ∈ R is a matrix-
valued function ∇ f : Rm×n 7→ Rm×n, whose components are the partial derivatives
of f with respect to each input variable xi j :

∇ f =
(
∂ f
∂xi j

)
1≤i≤m, 1≤ j≤n

. (2.27)

Other kinds of notation for the gradient are ∇X f and ∂ f
∂X .

For example, let

X =
(
x11 x12
x21 x22

)
, and f (X) = x2

11 + x22 − x12x21.

Then

∂ f
∂X =

(
∂ f
∂x11

∂ f
∂x12

∂ f
∂x21

∂ f
∂x22

)
=

(
2x11 x21
x12 1

)
.
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We are now ready to present the following results.

Theorem 2.8 Let X ∈ Rm×n be a matrix of mn variables. For any fixed matrix
A ∈ Rm×n, and fixed symmetric matrix B ∈ Rm×m, we have

∂

∂X tr(ATX) = A, and
∂

∂X tr(XTBX) = 2BX (2.28)

In particular, if B = I, then the second identity reduces to

∂

∂X tr(XTX) = 2X (2.29)

Proof We just need to verify the entrywise partial derivatives. For any integers
1 ≤ i ≤ m and 1 ≤ j ≤ n,

∂

∂xi j
tr(ATX) = ∂

∂xi j

m∑
k=1
(ATX)kk =

∂

∂xi j

m∑
k=1

(
n∑

s=1
ask xsk

)
=

∂

∂xi j
(ai j xi j) = ai j .

The completes the proof of the first identity.
For any integers 1 ≤ i ≤ m and 1 ≤ j ≤ n,

∂

∂xi j
tr(XTBX) = ∂

∂xi j

n∑
k=1
(XTBX)kk =

∂

∂xi j

n∑
k=1

(
m∑
s=1

m∑
t=1

xskbst xtk

)
.

Observe that the term-by-term partial derivatives are zero unless k = j. Thus,

∂

∂xi j
tr(XTBX) = ∂

∂xi j

m∑
s=1

m∑
t=1

xs jbst xt j .

To proceed further, we divide the double sum into four terms depending on whether
each of s, t is equal to i:

∂

∂xi j
tr(XTBX) = ∂

∂xi j

(
bii x2

i j +

m∑
t=1,t,i

xi jbit xt j +
m∑

s=1,s,i
xs jbsi xi j +

∑
s,i

∑
t,i

xs jbst xt j

)
= 2bii xi j +

m∑
t=1,t,i

bit xt j +
m∑

s=1,s,i
xs jbsi + 0

=

m∑
t=1

bit xt j +
m∑
s=1

xs jbsi

= (BX)i j + (BTX)i j
= 2(BX)i j (by using the symmetry of B).

This thus completes the proof of the second identity. �


