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Introduction
Real data sets often display nonlinear geometry in Euclidean spaces such
that linear dimension reduction methods (PCA, LDA) cannot work well.

As a result, many nonlinear dimension reduction methods, which preserve
different kinds of information in a manifold model, have been developed.

For example,

• ISOmetric feature mapping (ISOmap) ←− this lecture

• Locally linear embedding (LLE) ←− skipped (see book chapter)

• Laplacian Eigenmaps (LM) ←− next lecture
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What is a manifold?
A line, plane, or any higher dimensional equivalent in a Euclidean space is
a geometric object that locally has a fixed dimension and globally is flat.

If we relax the global flatness requirement and allows a plane to curve
naturally in space, then we get a manifold.
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Examples of 1-manifolds (top row) and 2-manifolds (bottom row)
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Remark.

• Manifolds can extend arbitrarily in high dimensional Euclidean spaces,
spanning many dimensions and producing complex global geometries.
This makes manifolds particularly suitable for modeling complex,
nonlinear data that display simple local structures (i.e, flat and low
dimensional).

• On the other hand, it has been observed that that many real data
sets, though living in high dimensional Euclidean spaces, follow
approximately along a low dimensional manifold.
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Example: The MNIST handwritten digit 1
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LetM⊂ Rd be a manifold with fixed local dimension k. We say that

• M is a k-dimensional manifold, or simply a k-manifold, in Rd.

• k is the intrinsic dimension of the manifold (or the manifold dimen-
sion), and d the ambient dimension of the manifold.
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The manifold learning problem

Problem. Given a set of points along a k-manifold embedded in a
high dimensional Euclidean space, x1, . . . ,xn ∈ M ⊂ Rd (where M is
unknown), find another set of vectors in a low-dimensional Euclidean space,
y1, . . . ,yn ∈ Rk, such that yi “represents” xi in some way.

Remark. {yi} can be thought of internal coordinates of the points {xi} in
the manifold.

Remark. Manifold learning is also called nonlinear dimensionality re-
duction because manifolds are typically nonlinear and require nonlinear
methods to identify the low dimensional intrinsic geometry.
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ISOmap

Briefly, ISOmap is MDS with a special metric, called geodesic distance,
for reducing the dimensionality of data sampled from a smooth manifold:

• Paper: A Global Geometric Framework for Nonlinear Dimensionality
Reduction, J. B. Tenenbaum, V. de Silva and J. C. Langford, Science
290 (5500): 2319–2323, December 2000

• Webpage at Stanford1

1https://web.archive.org/web/20161020154438/http://isomap.stanford.
edu/
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Motivation

Consider a sample from a manifold, e.g., Swissroll data.
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PCA has the following drawbacks:

• The PCA dimension needs to be higher, and sometimes much higher,
than the manifold dimension (otherwise PCA may project faraway
points along the manifold to nearby locations);

• PCA cannot capture the curved dimensions (its principal directions
are generally not meaningful).
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MDS + geodesic distance = ISOmap

Instead of preserving the Euclidean
distance (i.e., PCA), one can apply
MDS to preserve the geodesic dis-
tance along the manifold, which

• captures the true, nonlinear ge-
ometry corresponding to the
curved dimension;

• allows to see the transitioning
along the manifold (and thus the
global structure).
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How to find geodesic distances

The geodesic distance of two data
points on a manifold is the shortest
distance along the manifold.

On a sphere, it is just the great-circle
distance.

The exact geodesic distances are of-
ten impossible to find (unless we
know the true manifold).
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Strategy

In practical settings where we are only given a data set X sampled from
an unknown manifoldM, we can approximate the true geodesic distances
dM(i, j) by the shortest-path distances dG(i, j) on a nearest-neighbor
graph G built on the data set.
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Dijkstra’s algorithm for finding shortest-path distances:
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Detailed steps

1. Build a neighborhood graphG from the given data by connecting only
“nearby points” with edges weighted by their Euclidean distances,
i.e.,

dX(i, j) = ‖xi − xj‖ if xi,xj are “close” (and 0 otherwise)

where “closeness” is defined in one of the following ways:

• ε-ball approach: For each xi, another point xj is close if and
only if ‖xi − xj‖ ≤ ε, or
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• kNN approach: For each point xi, xj is close if it is among
the k nearest neighbors of xi.
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2. Apply Dijkstra’s algorithm with the nearest neighbor graph G (con-
structed by either method) to find the shortest-path distances for
all pairs of data points (dG(i, j)).
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3. Apply MDS with the shortest-path distances (dG(i, j)) to find an
embedding for the original data.
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The ISOmap algorithm

Input: Pairwise distances dX(i, j) of data points in the input space,
embedding dimension k ≥ 1, neighborhood graph method (ε-ball or rNN)

Output: A k-dimensional representation of the data Y ∈ Rn×k.

1. Construct a neighborhood graph G from the given distances dX(i, j)
using the specified method

2. Compute the shortest-path distances dG(i, j) between all vertices of
G by using Dijkstra’s algorithm.

3. Apply MDS with dG(i, j) as input distances to find a k-dimensional
representation Y of the original data
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Implementations

MATLAB code by the authors is available from the ISOmap website.2

There are a few small spacing errors; I have fixed them and uploaded the
corrected code to Canvas for you to download.

Python implementation: https://scikit-learn.org/stable/modules/

generated/sklearn.manifold.Isomap.html

2https://web.archive.org/web/20161020154438/http://isomap.stanford.
edu/
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Numerical issues

• ISOMAP is very slow on large data (use a subset).

• Needs a good estimate of the neighborhood size, r or ε.

• Assumes the given data set has no holes.

• ISOmap is prone to effects of short-circuiting.
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Demonstration
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More experiments

See

https://www.cs.cmu.edu/~bapoczos/Classes/ML10715_2015Fall/slides/

ManifoldLearning.pdf
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Summary

We have presented ISOmap as a nonlinear dimensionality reduction method.

Like PCA, it is a special instance of MDS:

• MDS + Euclidean distance: PCA

• MDS + geodesic distance: ISOmap
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