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Outline of the presentation:

• The 1D maximum-variance projection problem

• The general maximum-variance projection problem

• PCA: procedure, interpretation, numerical issues, and applications

• Dimension reduction by orthogonal best-fit linear subspaces (PCA
without centering -> useful on frequency data)



Principal Component Analysis (PCA)

Introduction
• Many data sets have very high dimensions nowadays, which causes
a significant challenge in data storage and modeling.

• We need a way to reduce the dimension of the data in order to
reduce memory requirement while increasing speed.

• If we discard some dimensions, will that degrade the performance?

• The answer can be no, as long as we do it carefully by preserving
the information that is needed by the task. In fact, it may even
lead to better accuracy in many cases.
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Principal Component Analysis (PCA)

An important fact

“Useful” information of a high dimensional data set is often contained in
only a small number of dimensions.
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Principal Component Analysis (PCA)

An example: the MNIST handwritten digits

Though in R784, the number of de-
grees of freedom (i.e., parameters)
each digit has is much less than 784.

For example, the images of digit 1
mainly differ in slope and thickness.

The data set also has useless dimen-
sions such as the boundary pixels.
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Principal Component Analysis (PCA)

Different dimentionality reduction algorithms preserve different kinds of
information.

This course covers the following methods:

• Principal Component Analysis (PCA): variance

• Multidimensional Scaling (MDS): distance

• Laplacian Eigenmaps: local affinity

• Linear Discriminant Analysis (LDA): separation among classes
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Principal Component Analysis (PCA)

The following dimensionality reduction methods are not covered in this
course, but are often covered in a multivariate statistical analysis course:

• PCA and LDA (from a statistical point of view)

• Factor analysis

• Canonical correlation analysis

For example,

• SJSU – Math 257: Multivariate Data Analysis

• PSU – STAT 505: Applied Multivariate Statistical Analysis1

1https://online.stat.psu.edu/stat505/
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Principal Component Analysis (PCA)

The 1D maximum-variance projection problem

Assume a set of n data points in d
dimensions, i.e., x1, . . . ,xn ∈ Rd,
where d is large.

We would like to find a line onto
which the orthogonal projections of
the data would have the largest pos-
sible amount of variance.
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Principal Component Analysis (PCA)

Mathematical derivation

Given data x1, . . . ,xn ∈ Rd, find a
line S parametrized by

x(t) = t · v + b,

where v,b ∈ Rd and ‖v‖ = 1, such
that the 1D orthogonal projections
of the data points onto the line

yi = vT (xi − b), 1 ≤ i ≤ n

have the largest possible variance.
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Principal Component Analysis (PCA)

Observe that for parallel lines, i.e.,

x(t) = tv + b
x(t) = tv + b′

where b 6= b′ ∈ Rd, the orthogonal
projections of the data onto them
are different, but the amount of vari-
ance is the same!

This implies that for the purpose of
preserving variance, the choice of
b can be arbitrary (only the vector
v ∈ Rd matters).
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Principal Component Analysis (PCA)

To make the problem tractable, we
fix (for all v)

b = x̄ def= 1
n

n∑
i=1

xi

so that we only need to compare
candidate lines that pass through x̄,
the centroid of the data set.

We have thus eliminated the variable
b and only need to focus on the unit-
vector variable v (representing the
direction of the line) when trying to
maximize the projection variance.
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Principal Component Analysis (PCA)

It turns out that with such a fixed choice of b, the projection coefficients
of the data onto any direction v

yi = vT (xi − x̄), 1 ≤ i ≤ n

are always automatically centered:

ȳ = 1
n

n∑
i=1

yi = vT · 1
n

n∑
i=1

(xi − x̄) = vT · 0 = 0.

This will make things like variance very simple to compute.

b b b b b b+
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Principal Component Analysis (PCA)

Since we now have ȳ = 0, the variance of the projections of the data is
simply

1
n− 1

n∑
i=1

y2
i

We call
∑n

i=1 y
2
i the scatter of the projections.

We can correspondingly formulate the 1D maximum-variance projection
problem as follows:

max
v: ‖v‖=1

n∑
i=1

y2
i︸ ︷︷ ︸

scatter

, where yi = vT (xi − x̄).
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Principal Component Analysis (PCA)

To solve the problem, we rewrite the objective function as follows:
n∑

i=1
y2

i =
∑

vT (xi − x̄)︸ ︷︷ ︸
yi

(xi − x̄)T v︸ ︷︷ ︸
yi

=
∑

vT
[
(xi − x̄)(xi − x̄)T

]
v

= vT
[∑

(xi − x̄)(xi − x̄)T
]

︸ ︷︷ ︸
:=S (d×d matrix)

v

= vT Sv.

Remark. The matrix S is called the sample scatter matrix of the data. It is
square, symmetric, and positive semidefinite, because it is a sum of such
matrices!
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Principal Component Analysis (PCA)

Accordingly, we have obtained the following (Rayleigh quotient) problem

max
v:‖v‖=1

vT Sv

which can be easily solved.

Theorem 0.1. Given a set of data points x1, . . . ,xn in Rd with centroid
x̄ = 1

n

∑
xi, the optimal direction for projecting the data (in order to have

maximum variance) is the largest eigenvector of the sample covariance
matrix S =

∑
(xi − x̄)(xi − x̄)T :

max
v: ‖v‖=1

vT Sv = λ1︸︷︷︸
max scatter

, achieved when v = ±v1.
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Principal Component Analysis (PCA)

Computing

The theorem requires constructing a d× d matrix from the given data

S =
n∑

i=1
(xi − x̄)(xi − x̄)T

which can be a significant challenge for large data sets in high dimensions.

• It takes O(d2) memory to store S;

• The time complexity of obtaining S is O(nd2).

We show that the eigenvectors of S can be efficiently computed from the
Singular Value Decomposition (SVD) of the centered data matrix.
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Principal Component Analysis (PCA)

Denote the original and centered data matrices (rows are data points) by

X =
[
x1 · · · xn

]T
∈ Rn×d

X̃ =
[
x̃1 · · · x̃n

]T
∈ Rn×d, where x̃i = xi − x̄, ∀i

Then

S =
n∑

i=1
x̃ix̃T

i = [x̃1 . . . x̃n] ·


x̃T

1
...

x̃T
n

 = X̃T X̃ ∈ Sd
0+(R).
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Principal Component Analysis (PCA)

Thus, the maximum-variance direction v1 can be computed as the top
right singular vector of the centered data matrix X̃:

X̃ ≈ σ1u1vT
1 ←− rank-1 SVD

The amount of scatter captured by the 1-dimensional projection line,

x(t) = tv1 + x̄, t ∈ R

is the following (note that it is highest possible):

λ1 = σ2
1.
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Principal Component Analysis (PCA)

We derive a few more useful formulas (in matrix form): Let

y = (yi)1≤i≤n ∈ Rn, where yi = (xi − x̄)T v1

the projection coefficients of the centered data, and

P =
[
p1 · · · pn

]T
∈ Rn×d, where pi = yiv1 + x̄

the full coordinates of the projections in the original space (Rd).

Then in matrix form, we can write

y = X̃v1 = σ1u1

P = X̃v1vT
1 + 1x̄T = σ1u1vT

1 + 1x̄T
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Principal Component Analysis (PCA)

Example 0.1. Find the maximum-variance direction for the following data
set of 3 points in R2:

x1 =
(
−3
1

)
, x2 =

(
−2
3

)
, x3 =

(
−1
2

)
.
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

The general maximum-variance projection problem

Given a data set, x1, . . . ,xn ∈ Rd,
and a positive integer k, we would
like to find a k-D plane for orthogo-
nally projecting the data which can
preserve the most variance:

x(α) = Vk ·α + b, α ∈ Rk.

Here, Vk ∈ Rd×k and VT
k Vk = Ik.

For the same reason we fix b = x̄,
and focus on finding the optimal Vk.
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Principal Component Analysis (PCA)

For any fixed choice of Vk, the orthogonal projections of the data points
onto the plane S are given by

pi = Vk VT
k (xi − x̄)︸ ︷︷ ︸

yi∈Rk

+x̄ = Vkyi + x̄, 1 ≤ i ≤ n

Note that the projection coefficients {yi}ni=1 are also centered:
n∑

i=1
yi = VT

k

n∑
i=1

(xi − x̄) = VT
k 0 = 0.

As a result, the total scatter of the projected points is
n∑

i=1
‖yi − 0‖2 =

n∑
i=1
‖yi‖2 =

n∑
i=1

yT
i yi.
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Principal Component Analysis (PCA)

Our goal is thus to solve the following problem

max
VT

k
Vk=I

n∑
i=1

yT
i yi, where yi = VT

k (xi − x̄).

We need to rewrite the sum into an explicit expression in Vk:
n∑

i=1
yT

i yi =
n∑

i=1
(xi − x̄)T Vk︸ ︷︷ ︸

yT
i

VT
k (xi − x̄)︸ ︷︷ ︸

yi

(yT
i yi = trace(yiyT

i ))

=
n∑

i=1
trace

[
VT

k (xi − x̄)(xi − x̄)T Vk

]
= trace

(
VT

k

[
n∑

i=1
(xi − x̄)(xi − x̄)T

]
Vk

)
= trace

(
VT

k SVk

)
.
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Principal Component Analysis (PCA)

Accordingly, we have obtained the following trace maximization problem

max
VT

k
Vk=I

trace
(
VT

k SVk

)
To better understand the problem, write Vk =

[
v1 · · · vk

]
. Then

• The objective function can be written as

vT
1 Sv1 + · · ·+ vT

k Svk.

It is a sum of the scatter of the projection onto each direction vi.

• The constraint, VT
k Vk = I, requires unit-norm and orthogonality:

vT
i vj =

1, i = j

0 i 6= j
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Principal Component Analysis (PCA)

The following result states that the k-dimensional maximum-variance
projection plane can be directly found from the spectral decomposition of
the sample scatter matrix.

Theorem. Given a set of data points x1, . . . ,xn ∈ Rd and a positive
integer k, let λ1 ≥ · · · ≥ λk be the largest k eigenvalues of the sample
scatter matrix S with corresponding (unit-norm) eigenvectors v1, . . . ,vk ∈
Rd. Then the maximum-variance projection plane of dimension k is the
plane through the centroid x̄ and with orthonormal basis Vk = [v1, . . . ,vk],
and the total amount of scatter the projections have is λ1 + · · ·+ λk, i.e.,

max
VT

k
Vk=I

trace
(
VT

k SVk

)
= λ1 + · · ·+ λk, when Vk = [v1 . . .vk].
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Principal Component Analysis (PCA)

Question: How much scatter does the data have in total?
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Principal Component Analysis (PCA)

Computing

Similarly, the maximum-variance directions Vk =
[
v1 · · · vk

]
can be

computed as the top k right singular vectors of X̃:

X̃ ≈ UkΣkVT
k ←− rank-k SVD

The amount of scatter captured by the k-dimensional projection plane,

x(α) = Vk ·α + x̄, α ∈ Rk

is the following (note that it is highest possible):

λ1 + · · ·+ λk = σ2
1 + · · ·+ σ2

k.
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Principal Component Analysis (PCA)

Let

Y =
[
y1 · · · yn

]T
∈ Rn×k, where yi = VT

k (xi − x̄)

P =
[
p1 · · · pn

]T
∈ Rn×d, where pi = Vkyi + x̄

be the matrices of projection coefficients and projection points, respectively.

Then

Y = X̃Vk = UkΣk,

P = X̃VkVT
k + 1x̄T = UkΣkVT

k + 1x̄T
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Principal Component Analysis (PCA)

Principal component analysis (PCA)

Let X =
[
x1 · · · xn

]T
∈ Rn×d be a given high dimensional data set.

The process of identifying the maximum-variance directions,

Vk =
[
v1 · · · vk

]
∈ Rd×k,

as well as the corresponding projection coefficients,

Y =
[
y1 · · · yn

]T
∈ Rn×k,

is called principal component analysis (PCA).
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Principal Component Analysis (PCA)

We say that

• The unit vector vj , for each 1 ≤ j ≤ k, is the jth principal
direction of the data;

• The projection coefficients Y ∈ Rn×k, are the first k principal
components of the data:

=b

X̃ Vk Y
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Principal Component Analysis (PCA)

– The ith row of Y, i.e.,

yT
i = (xi − x̄)T Vk ∈ Rk,

is the vector of the first k principal components of xi;

– The jth column of Y, i.e.,

Y(:, j) = X̃vj = σjuj ,

is the jth principal component of the data X.
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Principal Component Analysis (PCA)

Remark. Different principal components of the data must be uncorrelated.

To see this, first note (again) that each principal component of the data
(columns of Y) has been centered:

1T Y = 1T X̃Vk = 0T Vk = 0T

Now, the pairwise dot products between the principal components are

YT Y = ΣT
k UT

k UkΣk = Σ2
k

This shows that

• each principal component has scatter σ2
j , and

• the different components are uncorrelated.
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Principal Component Analysis (PCA)

Remark. PCA is a change of coordi-
nate system by using the maximum-
variance directions of the data!

• The new origin is set at the
centroid of the data set, x̄;

• The new coordinate axes
are set along the princi-
pal directions of the data,
v1,v2, . . . ,vk;

• The new coefficients are the
principal components.
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Principal Component Analysis (PCA)

An SVD-based algorithm for PCA
Input: Data matrix X ∈ Rn×d and integer k (with 0 < k < d)

Output: Top k principal directions Vk =
[
v1 · · · vk

]
and correspond-

ing principal components Y ∈ Rn×k.

Steps:

1. Center data: X̃ = [x1 − x̄, . . . ,xn − x̄]T where x̄ = 1
n

∑
xi

2. Perform rank-k SVD: X̃ ≈ UkΣkVT
k

3. Return: Y = X̃Vk = UkΣk (the latter is more efficient to compute
because of the diagonal matrix Σk)
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Principal Component Analysis (PCA)

MATLAB implementation of PCA

Xtilde = X - mean(X,1);
[U,S,V] = svds(Xtilde, k); % k is the reduced dimension
Y = U .* diag(S)’;
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Principal Component Analysis (PCA)

Example 0.2. Perform PCA (with k = 2), by hand and also in Matlab,
on the following data set:

x1 =
(
−3
1

)
, x2 =

(
−2
3

)
, x3 =

(
−1
2

)
.
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Principal Component Analysis (PCA)

Connection to orthogonal least-squares fitting
It turns out that the following two
planes coincide:
(1) PCA plane: which maximizes
the projection variance,
(2) Orthogonal best-fit plane:
which minimizes the orthogonal
least-squares fitting error.
Mathematical justification:∑
‖xi − x̄‖2︸ ︷︷ ︸

total scatter

=
∑
‖yi‖2︸ ︷︷ ︸

proj. var.

+
∑
‖xi − pi‖2︸ ︷︷ ︸

ortho. fitting error
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Principal Component Analysis (PCA)

Other interpretations of PCA
The PCA plane also tries to preserve, as much as possible, the Euclidean
distances between the given data points:

‖yi − yj‖2 ≈ ‖xi − xj‖2 for all pairs i 6= j

More on this when we get to the MDS part.

PCA can also be regarded as a feature extraction method:

vj = 1
λj

Svj = 1
λj

X̃T (X̃vj) ∈ Col(X̃T ), for all j < rank(X̃)

This shows that each vj is a linear combination of the centered data points
(and also a linear combination of the original data points).
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Principal Component Analysis (PCA)

Application to data visualization

Given a high dimensional data set
x1, . . . ,xn ∈ Rd, one can visualize
the data by

• projecting the data onto a 2
or 3 dimensional PCA plane,

• and plotting the principal com-
ponents as new coordinates
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Principal Component Analysis (PCA)

2D visualization of MNIST handwritten digits

1. The “average” writer

2. The full appearance of each digit class
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Principal Component Analysis (PCA)

4-6
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Principal Component Analysis (PCA)

3. Groups of digits
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Principal Component Analysis (PCA)

How to set the parameter k in other settings?
In general, we select the dimension k (as small as possible) such that the
top k principal components explain a certain fraction of the total scatter
of the data:

k∑
i=1

σ2
i︸ ︷︷ ︸

explained scatter

/
r∑

i=1
σ2

i︸ ︷︷ ︸
total scatter

> p.

Common values of p are .95 (the most commonly used), or .99 (more
conservative, less reduction), or .90, .80 (more aggressive).

However, in practical contexts, it is possible to get much lower than this
threshold while maintaining or even improving the accuracy.
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Principal Component Analysis (PCA)

Example: MNIST handwritten digits
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Principal Component Analysis (PCA)

Note that
r∑

i=1
σ2

i = ‖X̃‖2F ,

so there is no need to compute all singular values of X̃.

Matlab implementation:

Xtilde = X −mean(X);
s = svds(Xtilde, 200);
fracs = cumsum(s.ˆ2)/norm(Xtilde,′ fro′)ˆ2;
k = find(fracs > 0.95, 1,′ first′);
[U, S] = svds(Xtilde, k)
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Principal Component Analysis (PCA)

Feature scaling
PCA is a variance-preserving projection method. Since variance is deter-
mined by distance, PCA is sensitive to the units used by the different
features, which can cause them to have arbitrary magnitudes.

A common scaling method is to standardize each dimension (feature)
to have mean zero and standard deviation 1, so that they are on
comparable scales.

In MATLAB, it is implemented in the function ’normalize’:

Xnorm = normalize(X); % X is an n× d data matrix.
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Principal Component Analysis (PCA)

Out-of-sample extension for PCA
Suppose we have carried out PCA on a given data set (e.g., training data):

• X̃ = [x1 . . .xn]T − [x̄ . . . x̄]T where x̄ = 1
n

∑
xi

• X̃ ≈ UkΣkVT
k

Now there is a new point x0 (e.g., a test point). How can we extend PCA
to x0?

Two options:

• (naive) Add the new point to the data set and re-run PCA (maybe
more accurate, but time-consuming)
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Principal Component Analysis (PCA)

• (better) Just use the PCA plane that has already been obtained to
project the new point directly:

y0 = VT
k · (x0 − x̄)
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Principal Component Analysis (PCA)

Concluding remarks on PCA
PCA projects the (centered) data onto a k-dim plane that

• maximize the amount of variance in the projection domain,

• minimizes the orthogonal least-squares fitting error

As a dimension reduction and feature extraction method, it is

• unsupervised (blind to labels),

• nonparameteric (model-free), and

• very popular!
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Principal Component Analysis (PCA)

Lastly, PCA is a linear projection method:

y0 = VT
k (x0 − x̄)

For nonlinear (manifold) data, PCA will need to use a dimension higher
than the manifold dimension (in order to preserve most of the variance).
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Principal Component Analysis (PCA)

Dimension reduction via orthogonal best-fit linear subspaces

PCA fits an orthogonal least squares plane to the data through its centroid
and reduces the data to a set of principal components. It maximizes the
amount of projection variance among all planes of the same dimension.
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PCA In contrast, the orthogonal best-
fit linear subspace minimizes the
orthogonal (squared) fitting error
among all linear subspaces of the
same dimension, and preserves the
most amount of scatter of the data
relative to the origin.
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Principal Component Analysis (PCA)

To see this, first note that the total scatter of the given data relative to
the origin is

n∑
i=1
‖xi‖2 = ‖X‖2F .

For a candidate k-dimensional linear subspace with orthonormal basis
V ∈ Rd×k, the orthogonal projections of the data have scatter (relative to
the origin)

n∑
i=1
‖VVT xi‖2 = ‖VVT XT ‖2F

= trace(VVT XT XVVT ) = trace(VT XT XV),

where we used the property VT V = I.
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Principal Component Analysis (PCA)

In order to maximize the amount of preserved scatter, we must set V to
the matrix consisting of the top k eigenvectors of XT X, which are the
top right singular vectors of X.

This shows that the k-dimensional orthogonal best-fit linear subspaces
preserves the most amount of scatter of the data around the origin and
the maximum amount is

k∑
i=1

σ2
i (X)

The orthogonal best-fit linear subspace also provides a way to reduce the
dimensionality of the data by Y = XV. We refer to this method as
uncentered PCA.
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Principal Component Analysis (PCA)

Orthogonal best-fit linear subspaces are useful for modeling frequency data
(such as document collection) and reducing their high dimensionality by
SVD directly (no centering):
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Principal Component Analysis (PCA)

Application: Visualization of 20 newsgroups data
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Principal Component Analysis (PCA)

Summary information:

• 18,774 documents partitioned nearly evenly across 20 different news-
groups.

• A total of 61,118 unique words (including stopwords) present in the
corpus.

A significant challenge:

• The stopwords dominate in most documents in terms of frequency
and make the newsgroups very hard to be .
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Principal Component Analysis (PCA)

A fake document-term matrix:

the an zzzz math design car cars
doc 1 8 12 1 4 2
doc 2 7 10 3 4
doc 3 9 15 5 2
doc 4 5 9 2 2 2
doc 5 9 7 3 3 1
doc 6 1 1 2

We will not use any text processing software to perform stopword removal
(or other kinds of language processing such as stemming), but rather
rely on the following statistical operations (in the shown order) on the
document-term frequency matrix X to deal with stopwords:
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Principal Component Analysis (PCA)

1. Convert all the frequency counts into binary (0/1) form

the an zzzz matrix design car cars
doc 1 1 1 1 1 1
doc 2 1 1 1 1
doc 3 1 1 1 1
doc 4 1 1 1 1 1
doc 5 1 1 1 1 1
doc 6 1 1 1
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Principal Component Analysis (PCA)

2. Remove words that occur either in exactly one document (rare words
or typos) or in “too many“ documents (stopwords or common words)

math design car cars
doc 1 1 1
doc 2 1 1
doc 3 1 1
doc 4 1 1 1
doc 5 1 1 1
doc 6 1
6 3 5 3 1
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Principal Component Analysis (PCA)

3. Apply the inverse document frequency (IDF) weighting to the re-
maining columns of X:

X(:, j)← wj ·X(:, j), wj = log(n/nj),

where nj is the number of documents that contain the j-th word

math design car cars
doc 1 0.6931 0.1823
doc 2 0.6931 0.1823
doc 3 0.6931 0.1823
doc 4 0.1823 0.6931 1.0986
doc 5 0.1823 0.6931 1.0986
doc 6 0.6931
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Principal Component Analysis (PCA)

4. Rescale the rows of X to have unit norm in order to remove the
documents’ length information

math design car cars
doc 1 0.9671 0.2544
doc 2 0.9671 0.2544
doc 3 0.9671 0.2544
doc 4 0.1390 0.5284 0.8375
doc 5 0.1390 0.5284 0.8375
doc 6 1
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Principal Component Analysis (PCA)

By applying the above procedure (a particular TF-IDF weighting scheme2)
to the 20newsgroups data and keeping only the words with frequencies
between 2 and 939 (average cluster size), we obtain a matrix of 18,768
nonempty documents and 55,571 unique words, with average row sparsity
73.4.

For ease of demonstration, we focus on six newsgroups in the processed
data set (one from each category) and project them by SVD into a
3-dimensional plane through the origin for visualization.

2Full name: term frequency inverse document frequency.
See https://en.wikipedia.org/wiki/Tf-idf
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

We also display the top 20 words that are the most “relevant” to the
underlying topic of each class.

To rank the words based on relevance to each newsgroup, we first compute
the top right singular vector v1 of a fixed newsgroup (without centering),
which represents the dominant direction of the cluster.

Each keyword i corresponds to a distinct dimension of the data and is
represented by ei.

The following score can then be used to measure and compare the relevance
of each keyword:

score(i) = cos θi = 〈v1, ei〉 = v1(i), i = 1, . . . , 55570
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Principal Component Analysis (PCA)
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Principal Component Analysis (PCA)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 67/68



Principal Component Analysis (PCA)

Latent Semantic Analysis (LSA)
The preceding process used in reducing the dimension of documents data

• TF-IDF processing

• Dimension reduction by SVD (no centering)

• Cosine similarity

is called latent semantic analysis (see e.g., the Wikipedia page on it).

It is a technique in natural language processing of analyzing relationships
between a set of documents and the terms they contain by producing a
set of concepts related to the documents and terms.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 68/68


