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Linear Discriminant Analysis (LDA)

Data representation vs data classification

PCA aims to find the most accu-
rate data representation in a lower
dimensional space spanned by the
maximum-variance directions.

However, such directions might
not work well for supervised tasks,
where the data points have labels

and (only) discriminative informa-
tion needs to preserved in the data
reduction step. Representative, not discriminative
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Linear Discriminant Analysis (LDA)

The two-class LDA problem

Problem. Given a labeled data set o
X1,...,%, € R? consisting of two °
disjoint classes C'1, Cs, find a most °
discriminative line

e o

x(t)=tv+b, teR
where v,b € R? and |v| = 1.

Note: Projections of the two classes

onto parallel lines have “the same
amount of separation”.
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Linear Discriminant Analysis (LDA)

Mathematical setup

This time we are going to focus on o« *
lines that pass through the origin: . o °
=t X *
x(t) =tv, teR x(t) =tv , ..
o
where v € R? is a unit vector. A o
e
The 1D projections of the data are v -
r . N\
Pi=vvx;=avVv, t=1....n
——
=a;

Note that they also have labels.
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Linear Discriminant Analysis (LDA)

Now the data look like this: One (naive) idea is to measure
the distance between the two class
means in the 1D projection space:

|1 — pa|, where

Za,_ T v,

XZ€C1 X»LECl

Z Xl—V m;

xl€C1
How do we quantify the separation

between the two classes (in order to and similarly,

compare different directions v and 1
=vimy, my=— x
select the best one)? H2 = 2, 2= o >
C
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Linear Discriminant Analysis (LDA)

That is, to solve the following prob- ,u’l ,u’2
lem = -
max i~ o e

vi[lvl|=1
where
i = vaj, j=172.

However, this criterion does not
work well (as shown in the right

plot).

What else do we need to control?
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Linear Discriminant Analysis (LDA)

It turns out that we should also pay attention to the variances of the
projected classes:

st= Y (ai—m)* s5= ) (ai—p2)®

x,;,€C1 x;€Co
Ideally, the projected classes have both faraway means and small variances,
which can be achieved through the following modified formulation:

2
(11 — p2)

max e o
vivl=1 s7 + 55

The optimal v should be such that
o (1 — piz)?: large

e 52,52 both small
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Linear Discriminant Analysis (LDA)

Mathematical derivation

First, we derive a formula for the distance between the projected centroids:

(1 = p2)® = (v'my — vi'my)? = (v7'(m; — my))*
=vI(m; —my) - (m; —my)Tv
=vISyv,

where
Sy = (m; — my)(m; — my)T € R4

is called the between-class scatter matrix.

Clearly, Sy is square, symmetric and positive semidefinite. Moreover,
rank(Sp) = 1, which implies that it only has 1 positive eigenvalue!

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 9/48



Linear Discriminant Analysis (LDA)

Next, for each class j = 1,2, the variance of the projections (onto v) is

si= Y (ai—p)*= ) (vixi—vimy)®

x;€C} x,€Cj
= Z VT(Xi — mj)(xi — mj)TV
XiECj

=v7 > (% —my)(x; — m;)" | v =vTS;v,
x;€C;

where
Sj = Z (Xi — mj)(xz- — mj)T S RdXd
x;€C;

is called the within-class scatter matrix for class j.
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Linear Discriminant Analysis (LDA)

The total within-class scatter of the two classes in the projection space is
24+ 52 =vIS v+ vISyv =vI(S; +Sy)v=vIS,v
where

Sw = Sl +S5 = Z (Xi — ml)(xi — ml)T + Z (Xi — mg)(xi — mg)T
x;,€C1 x;€Ca

is called the total within-class scatter matrix of the original data.

Remark. S,, € R% is also square, symmetric, and positive semidefinite.
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Linear Discriminant Analysis (LDA)

Putting everything together, we have derived the following problem:

vIiS,v
max —&mw—
vi|vl=1 vI'S,v

Theorem 0.1. Suppose S, is nonsingular. The maximizer of the problem
is given by the largest generalized eigenvector v; of (Sp, Sy,), i.e.,
SbV1 = )quvl <~ S;lsbvl = )\1V1

and the maximum is A;, the largest generalized eigenvalue of (Sp, Sy,)

Remark. rank(S;'Sy) = rank(S;) = 1, so A1 is the only nonzero (positive)
eigenvalue that can be found. It represents the the largest amount of
separation between the two classes along any single direction.
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Linear Discriminant Analysis (LDA)

Computing
The following are different ways of finding the optimal direction vy:
e Slowest way (via three expensive steps):
1. work really hard to invert the d x d matrix S,,,
2. do the matrix multiplication S;;'Sy,

3. solve the eigenvalue problem S 'Syv; = A\jvy.
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Linear Discriminant Analysis (LDA)

e A slight better way: Rewrite as a generalized eigenvalue problem
Spvi = A1Sy v,
and then solve it through functions like eigs(A,B) in MATLAB.
e The smartest way is to rewrite as

A1V = Sl_ul (m1 — mg)(ml — m2)T Vi

Sy
a1 T
=S, (m; —my) - (m; —my)" vy
—_—

scalar
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Linear Discriminant Analysis (LDA)

This implies that
Vi X S;l(ml — mpy)

and it can be computed from S;;!(m; — my) through rescaling!

Remark. Here, inverting S,, should still be avoided; instead, one
should implement this by solving a linear system

SwX =1mjp — my.

This can be done through S, \ (m; — my) in MATLAB.
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Linear Discriminant Analysis (LDA)

Two-class LDA: summary
The optimal discriminative direction is

v =8, (m; — my) (plus normalization)

It is the solution of

T 2
viSyv (11 — p2)
max 7 —
vivl[=1 VIS,V 57+ s5
where

Sy = (m; — my)(m; — my)"

Sw=S1+82, S;= Z (x —mj)(x — mj)T
XGCj

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 16/48



Linear Discriminant Analysis (LDA)

An example

Consider the following labeled data: 5
e Class 1 has three points
4 \%
(1,2),(2,3), (3,4.9), |
3 (
with mean m; = (2,3.3)T SE
2 O \V4 \V 2
e Class 2 has three points
1 V
(2,1),(3,2),(4,3.9),
0
with mean my = (3,2.3)7 0 1 2 8 4

Find the optimal LDA direction.
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Linear Discriminant Analysis (LDA)

Solution. By direct calculation,

() ()] 16 9~ (2 09)
AIEOREES)
() ()] 16 19)- ¢ s9)

3
(1 13 N 0 0 N 1 1.6
“\1.3 1.69 0 0.09 1.6 2.56

S: =
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Linear Discriminant Analysis (LDA)

and similarly,

2 29
S2 = (2.9 4.34)

It follows that the total within-class scatter matrix is

4 58
Sw =81 482 = (5.8 8.68)

(Later, we will matricize the formula for S,, which is easier to use)

Thus, the optimal discriminative direction is

normalizing
T merEy

v =S,1(m; —my) = (—13.4074,9.0741) (—0.8282,0.5605)T
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Linear Discriminant Analysis (LDA)

and the projection coordinates are

Y = [0.2928,0.0252,0.2619, —1.0958, —1.3635, —1.1267]
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Linear Discriminant Analysis (LDA)

Experiment 1 (MNIST handwritten digits)

2D PCA on digits 1 and 7 2D PCA on digits 4 and 9

0 5000 10000 15000 0 5000 10000 15000 ™ 0 2000 4000 6000 8000 10000 12000 14000
index index index
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Linear Discriminant Analysis (LDA)

Experiment 2 (Wine quality data)

6 T
.
() RedWine
* WhiteWine
4 |- .|

2 L I I I
0 1000 2000 3000 4000 5000 6000 7000
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Linear Discriminant Analysis (LDA)

Multiclass extension

The previous procedure only applies to 2 classes. When there are ¢ > 3
classes, what is the “most discriminative” direction?

It will be based on the same intu-
ition that the optimal direction v
should project the different classes
such that

e classes are as tight as possible;

e their centroids are as far from
each other as possible.

Both are actually about variances.
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Linear Discriminant Analysis (LDA)

Mathematical derivation

For any unit vector v, the tightness of the projected classes (of the training
data) is still described by the total within-class scatter:

zc: s? = ZVTSjV =vT (Z Sj> vV = VTSwV
j=1

where
C

Sw:ZSj, Z x —m;)(x — m;)”
j=1

eCj

The matrix S,, € R%*4 js called the total within-class scatter matrix. It is
square, symmetric and positive semidefinite.
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Linear Discriminant Analysis (LDA)

To make the class centroids 1; (in the projection space) as far from each
other as possible, we maximize the following between-class scatter:

C (&
1
E ni(pj — 1), where p=— E n;p; +— weighted average
: n 4
7j=1 7=1

Note that u has the interpretation of the projection of the global centroid
(m) of the training data onto v:

1 T . 1C . 1™ T
H:E;n] (V mj> =V E;njmj =V (EZXJ =V m.

i=1
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Linear Discriminant Analysis (LDA)

..m3

:o+. °

°
+m (global centroid)
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Linear Discriminant Analysis (LDA)

We simplify the between-class scatter (in the v space) as follows:
C
T
> njlpy — p)* = ni(v! (m; — m))?
j=1

= Z n; VT(mj —m)(m; — m)TV
=v7T (Z nj(m; —m)(m; — m)T) v
=vI'Syv,
where
Sy = inj(mj —m)(m; —m)" ¢ R
j=1

is called the between-class scatter matrix. It is also square, symmetric,
and positive semidefinite.
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Linear Discriminant Analysis (LDA)

We have thus arrived at the following generalized Rayleigh quotient prob-

lem: - )
v Syv ni(p; —
max . b P > ](:UJQ D)
vivl=1 v'Sy,v > 53

Assuming S,, is nonsingular (positive definite), the solution is given by
the largest generalized eigenvector v; of (S, S,,) (and also the largest
eigenvector of S_'S;):

Spvi = M Syvi & S;ISbvl = A\1V1.
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Linear Discriminant Analysis (LDA)

Remark. When ¢ = 2, it can be verified that

2
ning 2
> njlpy — p)? = —— (1 — p2)
=1 n
2
ning
> ny(m; —m)(m; —m)" = == (my —my)(my —my)”,
j=1 )

This shows that when there are only two classes, the weighted definitions
of between-class scatter are just a scalar multiple of the unweighted
definitions.

Therefore, the multiclass LDA is a generalization of the two-class LDA:

(1 — p2)*/ (53 + 83) — D mi(py — w)?/> 52
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Linear Discriminant Analysis (LDA)

Computing

However, the formula v; &< S;;}(m; — my) is no longer valid:

Avi =8,'Spvy = ansiul(mj —m) (m; —m)"v,

T —_——
=1 scalar
which only shows that
vy € Span{S;'(m; — m),...,S,; (m, — m)}.

So we have to find v; by solving a generalized eigenvalue problem:

SbV1 = /\15wV1 .

Next, we'll derive new formulas in matrix form for both matrices S,,, Sp.
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Linear Discriminant Analysis (LDA)

First, we have

Sy = > nj(m; —m)(m; —m)”
Vi (my —m)”"
= [vni(m; —m)--- /n.(m, —m)| - :
V7e(me — m)T
=M'M
where

w/nl(ml — m)T
M = : € R

Ve(me — m)”
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Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

Next, let X; = x; — m; for each ;!:\*
x; € 5, and define

-

X = [X1...%,)7 e R™,

the locally centered data matrix. %

Then we can express S, as follows:

S0=3 3 Gn-myx-m) =3 3 %l =3 ws!

Jj=1x;€C; J=1x,€Cj

= X'X.
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Linear Discriminant Analysis (LDA)

Simulation

c:. ¢ ° o®
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Linear Discriminant Analysis (LDA)

Experiment (lris data)

33—

() Iris-setosa

o | ® lris-versicolor
“f Iris-virginica

100 150
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Linear Discriminant Analysis (LDA)

What about the second eigenvector v,?

% N

€e°
F
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Linear Discriminant Analysis (LDA)

How many discriminative directions can we find?

To answer this question, we need to count the nonzero eigenvalues of
S,'Syv = Av, since only their eigenvectors will be used as discriminative

directions.

In the above equation, the within-class scatter matrix S,, is assumed to be
nonsingular. However, the between-class scatter matrix S; is of low rank.

To see this, first note that

rank(S;) = rank(M” M) = rank(M)
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Linear Discriminant Analysis (LDA)

Next, observe that the row of the matrix M are linearly dependent:

Vi1 y/ni(mp —m) + -+ /ne - /ne(me, — m)
= (nm; +---ncm.) — (1 + -+ n.)m
=nm —nm = 0.
As a result, rank(M) < ¢ — 1.
It follows that rank(S;,'S,) = rank(S;) < ¢ — 1.

Therefore, LDA can only find at most ¢ — 1 discriminative directions.
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Linear Discriminant Analysis (LDA)

Multiclass LDA algorithm
Input: Labeled data X € R"*? (with ¢ classes)

Output: < ¢—1 discriminative directions and projections of X onto them

1. Find the class centroids {m;} and center the data locally.

2. Compute the within-class and between-class scatter matrices, i.e.,
Sy =XTX and S, = MTM.

3. Solve the generalized eigenvalue problem Syv = AS,,v to find all
nonzero eigenvectors Vi = [vy,...,vg] (for some k < c¢—1)

4. Project the data X onto them Y = X -V, € R?*F,
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Linear Discriminant Analysis (LDA)

The singularity issue of S,

So far, we have assumed that the total within-class scatter matrix S, is
nonsingular, so that we can solve the LDA problem

T
v Syv )
max via Spv = AS, V.

vi||v||=1 vI'S, v

However, in many cases (especially when having high dimensional data),
the matrix S,, € R¥4 is (nearly) singular.
The reason is often that the centered data points, i.e., the rows of X, do

not fully span all d dimensions, thus making rank(S,,) = rank(X) < d
(which implies that S,, is singular).
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Linear Discriminant Analysis (LDA)

«10% eigenvalues of S, (MNIST digits 0,1,2)

7; w
6t 1
5% 7
al i
36 1
28 ,
°: 627th eigenvalue:

1 E 2.3258e-27
N \

0 200 400 600 800
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Linear Discriminant Analysis (LDA)

How do we fix it?

A common way is to first apply global PCA to reduce the dimensionality
of the labeled data (all classes)

Ypea = (X = [m..m]") - Vo
and then perform LDA on the reduced data:

Z13s = Ypca - Vida < learned from Y,
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Linear Discriminant Analysis (LDA)

Two other methods are to

e Use pseudoinverse instead:

SISyv=Av — Sylsyv=v

e Regularize S,;:
S'Ef) =S, + 5Id
= QAQ" + 81,
= Q(A+51,)Q"
= leag()\l +/87a)‘d+6)QT

where 5 > 0 is parameter whose value needs to be tuned.
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Linear Discriminant Analysis (LDA)

Other numerical issues
Similarly to PCA, one should pay attention to the following:

e Feature scaling: Standardize each feature to have mean zero and
standard deviation 1, so that they are on comparable scales:

Xnorm = normalize(X);
e Out of sample extension:

yo = VTxo, where V4% X
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Linear Discriminant Analysis (LDA)

Experiment (lris data)

2.6

(O lIris-setosa
® Iris-versicolor
~f Iris-virginica
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Linear Discriminant Analysis (LDA)

Experiment (MNIST handwritten digits)

2D PCA on digits 0, 1 and 7 2D PCA on digits 3, 5and 8 2D PCA on digits 4, 7 and 9

PCA (95%) + LDA on digits 0, 1 and 7
0

.1

7.
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Linear Discriminant Analysis (LDA)

Comparison between PCA and LDA

| PCA | LDA
Model nonparametric* nonparametric*
Use labels? no (unsupervised) yes (supervised)
Criterion variance separation
#dimensions (k) any <c-—1
Computing SVD generalized eigenvectors

Linear projection?

yes (V! (x — %))

yes (VTx)

Nonlinear boundary

can handle**

cannot handle

*Both work the best with multivariate Gaussian samples
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Linear Discriminant Analysis (LDA)

**In the case of nonlinearly separated classes, PCA often works better
than LDA as the latter can only find at most ¢ — 1 directions (insufficient
to preserve all the discriminative information in the data).

e LDA with k& = 1: does not PCA (k=1)
work well;
[}
e PCA with £ = 1: does not
[}

work well;

e PCA with k = 2: can preserve

[ ]
[ ]
all the nonlinear separation. °
LDA (k =1)
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