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Linear Discriminant Analysis (LDA)

Data representation vs data classification

PCA aims to find the most accu-
rate data representation in a lower
dimensional space spanned by the
maximum-variance directions.

However, such directions might
not work well for supervised tasks,
where the data points have labels
and (only) discriminative informa-
tion needs to preserved in the data
reduction step.
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Linear Discriminant Analysis (LDA)

The two-class LDA problem

Problem. Given a labeled data set
x1, . . . ,xn ∈ Rd consisting of two
disjoint classes C1, C2, find a most
discriminative line

x(t) = tv + b, t ∈ R

where v,b ∈ Rd and ‖v‖ = 1.

Note: Projections of the two classes
onto parallel lines have “the same
amount of separation”.
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Linear Discriminant Analysis (LDA)

Mathematical setup

This time we are going to focus on
lines that pass through the origin:

x(t) = tv, t ∈ R

where v ∈ Rd is a unit vector.

The 1D projections of the data are

pi = v vTxi︸ ︷︷ ︸
=ai

= aiv, i = 1, . . . , n

Note that they also have labels.
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Linear Discriminant Analysis (LDA)

Now the data look like this:
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How do we quantify the separation
between the two classes (in order to
compare different directions v and
select the best one)?

One (naive) idea is to measure
the distance between the two class
means in the 1D projection space:
|µ1 − µ2|, where

µ1 = 1
n1

∑
xi∈C1

ai = 1
n1

∑
xi∈C1

vTxi

= vT · 1
n1

∑
xi∈C1

xi = vTm1

and similarly,

µ2 = vTm2, m2 = 1
n2

∑
xi∈C2

xi.
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Linear Discriminant Analysis (LDA)

That is, to solve the following prob-
lem

max
v: ‖v‖=1

|µ1 − µ2|

where

µj = vTmj , j = 1, 2.

However, this criterion does not
work well (as shown in the right
plot).

What else do we need to control?
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Linear Discriminant Analysis (LDA)

It turns out that we should also pay attention to the variances of the
projected classes:

s2
1 =

∑
xi∈C1

(ai − µ1)2, s2
2 =

∑
xi∈C2

(ai − µ2)2

Ideally, the projected classes have both faraway means and small variances,
which can be achieved through the following modified formulation:

max
v:‖v‖=1

(µ1 − µ2)2

s2
1 + s2

2
.

The optimal v should be such that

• (µ1 − µ2)2: large

• s2
1, s

2
2: both small
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Linear Discriminant Analysis (LDA)

Mathematical derivation
First, we derive a formula for the distance between the projected centroids:

(µ1 − µ2)2 = (vTm1 − vTm2)2 = (vT (m1 −m2))2

= vT (m1 −m2) · (m1 −m2)Tv
= vTSbv,

where
Sb = (m1 −m2)(m1 −m2)T ∈ Rd×d

is called the between-class scatter matrix.

Clearly, Sb is square, symmetric and positive semidefinite. Moreover,
rank(Sb) = 1, which implies that it only has 1 positive eigenvalue!
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Linear Discriminant Analysis (LDA)

Next, for each class j = 1, 2, the variance of the projections (onto v) is

s2
j =

∑
xi∈Cj

(ai − µj)2 =
∑

xi∈Cj

(vTxi − vTmj)2

=
∑

xi∈Cj

vT (xi −mj)(xi −mj)Tv

= vT
 ∑

xi∈Cj

(xi −mj)(xi −mj)T
v = vTSjv,

where
Sj =

∑
xi∈Cj

(xi −mj)(xi −mj)T ∈ Rd×d

is called the within-class scatter matrix for class j.
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Linear Discriminant Analysis (LDA)

The total within-class scatter of the two classes in the projection space is

s2
1 + s2

2 = vTS1v + vTS2v = vT (S1 + S2)v = vTSwv

where

Sw = S1 +S2 =
∑

xi∈C1

(xi−m1)(xi−m1)T +
∑

xi∈C2

(xi−m2)(xi−m2)T

is called the total within-class scatter matrix of the original data.

Remark. Sw ∈ Rd×d is also square, symmetric, and positive semidefinite.
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Linear Discriminant Analysis (LDA)

Putting everything together, we have derived the following problem:

max
v:‖v‖=1

vTSbv
vTSwv

Theorem 0.1. Suppose Sw is nonsingular. The maximizer of the problem
is given by the largest generalized eigenvector v1 of (Sb,Sw), i.e.,

Sbv1 = λ1Swv1 ⇐⇒ S−1
w Sbv1 = λ1v1

and the maximum is λ1, the largest generalized eigenvalue of (Sb,Sw)

Remark. rank(S−1
w Sb) = rank(Sb) = 1, so λ1 is the only nonzero (positive)

eigenvalue that can be found. It represents the the largest amount of
separation between the two classes along any single direction.
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Linear Discriminant Analysis (LDA)

Computing

The following are different ways of finding the optimal direction v1:

• Slowest way (via three expensive steps):

1. work really hard to invert the d× d matrix Sw,

2. do the matrix multiplication S−1
w Sb,

3. solve the eigenvalue problem S−1
w Sbv1 = λ1v1.
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Linear Discriminant Analysis (LDA)

• A slight better way: Rewrite as a generalized eigenvalue problem

Sbv1 = λ1Swv1,

and then solve it through functions like eigs(A,B) in MATLAB.

• The smartest way is to rewrite as

λ1v1 = S−1
w (m1 −m2)(m1 −m2)T︸ ︷︷ ︸

Sb

v1

= S−1
w (m1 −m2) · (m1 −m2)Tv1︸ ︷︷ ︸

scalar
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Linear Discriminant Analysis (LDA)

This implies that
v1 ∝ S−1

w (m1 −m2)

and it can be computed from S−1
w (m1 −m2) through rescaling!

Remark. Here, inverting Sw should still be avoided; instead, one
should implement this by solving a linear system

Swx = m1 −m2.

This can be done through Sw \ (m1 −m2) in MATLAB.
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Linear Discriminant Analysis (LDA)

Two-class LDA: summary
The optimal discriminative direction is

v∗ = S−1
w (m1 −m2) (plus normalization)

It is the solution of

max
v:‖v‖=1

vTSbv
vTSwv ←− (µ1 − µ2)2

s2
1 + s2

2

where

Sb = (m1 −m2)(m1 −m2)T

Sw = S1 + S2, Sj =
∑

x∈Cj

(x−mj)(x−mj)T
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Linear Discriminant Analysis (LDA)

An example

Consider the following labeled data:

• Class 1 has three points

(1, 2), (2, 3), (3, 4.9),

with mean m1 = (2, 3.3)T

• Class 2 has three points

(2, 1), (3, 2), (4, 3.9),

with mean m2 = (3, 2.3)T

Find the optimal LDA direction.
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Linear Discriminant Analysis (LDA)

Solution. By direct calculation,

S1 =
[(

1
2

)
−

(
2

3.3

)]
·
[(

1 2
)
−
(

2 3.3
)]

+
[(

2
3

)
−

(
2

3.3

)]
·
[(

2 3
)
−
(

2 3.3
)]

+
[(

3
4.9

)
−

(
2

3.3

)]
·
[(

3 4.9
)
−
(

2 3.3
)]

=
(

1 1.3
1.3 1.69

)
+
(

0 0
0 0.09

)
+
(

1 1.6
1.6 2.56

)

=
(

2 2.9
2.9 4.34

)
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Linear Discriminant Analysis (LDA)

and similarly,

S2 =
(

2 2.9
2.9 4.34

)
It follows that the total within-class scatter matrix is

Sw = S1 + S2 =
(

4 5.8
5.8 8.68

)

(Later, we will matricize the formula for Sw which is easier to use)

Thus, the optimal discriminative direction is

v = S−1
w (m1 −m2) = (−13.4074, 9.0741)T normalizing−→ (−0.8282, 0.5605)T
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Linear Discriminant Analysis (LDA)

and the projection coordinates are

Y = [0.2928, 0.0252, 0.2619,−1.0958,−1.3635,−1.1267]
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Linear Discriminant Analysis (LDA)

Experiment 1 (MNIST handwritten digits)
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Linear Discriminant Analysis (LDA)

Experiment 2 (Wine quality data)
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Linear Discriminant Analysis (LDA)

Multiclass extension
The previous procedure only applies to 2 classes. When there are c ≥ 3
classes, what is the “most discriminative” direction?

It will be based on the same intu-
ition that the optimal direction v
should project the different classes
such that

• classes are as tight as possible;

• their centroids are as far from
each other as possible.

Both are actually about variances.
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Linear Discriminant Analysis (LDA)

Mathematical derivation

For any unit vector v, the tightness of the projected classes (of the training
data) is still described by the total within-class scatter:

c∑
j=1

s2
j =

∑
vTSjv = vT

(∑
Sj
)

v = vTSwv

where
Sw =

c∑
j=1

Sj , Sj =
∑

x∈Cj

(x−mj)(x−mj)T

The matrix Sw ∈ Rd×d is called the total within-class scatter matrix. It is
square, symmetric and positive semidefinite.
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Linear Discriminant Analysis (LDA)

To make the class centroids µj (in the projection space) as far from each
other as possible, we maximize the following between-class scatter:

c∑
j=1

nj(µj − µ)2, where µ = 1
n

c∑
j=1

njµj ←− weighted average

Note that µ has the interpretation of the projection of the global centroid
(m) of the training data onto v:

µ = 1
n

c∑
j=1

nj
(
vTmj

)
= vT

 1
n

c∑
j=1

njmj

 = vT
(

1
n

n∑
i=1

xi

)
= vTm.
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Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

We simplify the between-class scatter (in the v space) as follows:
c∑
j=1

nj(µj − µ)2 =
∑

nj(vT (mj −m))2

=
∑

nj vT (mj −m)(mj −m)Tv

= vT
(∑

nj(mj −m)(mj −m)T
)

v

= vTSbv,

where
Sb =

c∑
j=1

nj(mj −m)(mj −m)T ∈ Rd×d

is called the between-class scatter matrix. It is also square, symmetric,
and positive semidefinite.
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Linear Discriminant Analysis (LDA)

We have thus arrived at the following generalized Rayleigh quotient prob-
lem:

max
v:‖v‖=1

vTSbv
vTSwv ←−

∑
nj(µj − µ)2∑

s2
j

Assuming Sw is nonsingular (positive definite), the solution is given by
the largest generalized eigenvector v1 of (Sb,Sw) (and also the largest
eigenvector of S−1

w Sb):

Sbv1 = λ1Swv1 ⇔ S−1
w Sbv1 = λ1v1.
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Linear Discriminant Analysis (LDA)

Remark. When c = 2, it can be verified that
2∑
j=1

nj(µj − µ)2 = n1n2
n

(µ1 − µ2)2

2∑
j=1

nj(mj −m)(mj −m)T = n1n2
n

(m2 −m1)(m2 −m1)T ,

This shows that when there are only two classes, the weighted definitions
of between-class scatter are just a scalar multiple of the unweighted
definitions.

Therefore, the multiclass LDA is a generalization of the two-class LDA:

(µ1 − µ2)2/(s2
1 + s2

2) −→
∑

nj(µj − µ)2/
∑

s2
j
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Linear Discriminant Analysis (LDA)

Computing

However, the formula v1 ∝ S−1
w (m1 −m2) is no longer valid:

λ1v1 = S−1
w Sbv1 =

c∑
j=1

njS−1
w (mj −m) (mj −m)Tv1︸ ︷︷ ︸

scalar

which only shows that

v1 ∈ Span{S−1
w (m1 −m), . . . ,S−1

w (mc −m)}.

So we have to find v1 by solving a generalized eigenvalue problem:

Sbv1 = λ1Swv1.

Next, we’ll derive new formulas in matrix form for both matrices Sw,Sb.
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Linear Discriminant Analysis (LDA)

First, we have

Sb =
∑

nj(mj −m)(mj −m)T

= [
√
n1(m1 −m) · · ·

√
nc(mc −m)] ·


√
n1(m1 −m)T

...
√
nc(mc −m)T


= M̃TM̃

where

M̃ =


√
n1(m1 −m)T

...
√
nc(mc −m)T

 ∈ Rc×d
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Linear Discriminant Analysis (LDA)
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Linear Discriminant Analysis (LDA)

Next, let x̃i = xi − mj for each
xi ∈ Cj , and define

X̃ = [x̃1 . . . x̃n]T ∈ Rn×d,

the locally centered data matrix.
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Then we can express Sw as follows:

Sw =
c∑
j=1

∑
xi∈Cj

(xi −mj)(xi −mj)T =
c∑
j=1

∑
xi∈Cj

x̃ix̃Ti =
n∑
i=1

x̃ix̃Ti

= X̃T X̃.
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Linear Discriminant Analysis (LDA)

Simulation
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Linear Discriminant Analysis (LDA)

Experiment (Iris data)
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Linear Discriminant Analysis (LDA)

What about the second eigenvector v2?
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Linear Discriminant Analysis (LDA)

How many discriminative directions can we find?

To answer this question, we need to count the nonzero eigenvalues of
S−1
w Sbv = λv, since only their eigenvectors will be used as discriminative

directions.

In the above equation, the within-class scatter matrix Sw is assumed to be
nonsingular. However, the between-class scatter matrix Sb is of low rank.

To see this, first note that

rank(Sb) = rank(M̃TM̃) = rank(M̃)
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Linear Discriminant Analysis (LDA)

Next, observe that the row of the matrix M̃ are linearly dependent:
√
n1 ·
√
n1(m1 −m) + · · ·+

√
nc ·
√
nc(mc −m)

= (n1m1 + · · ·ncmc)− (n1 + · · ·+ nc)m
= nm− nm = 0.

As a result, rank(M̃) ≤ c− 1.

It follows that rank(S−1
w Sb) = rank(Sb) ≤ c− 1.

Therefore, LDA can only find at most c− 1 discriminative directions.
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Linear Discriminant Analysis (LDA)

Multiclass LDA algorithm
Input: Labeled data X ∈ Rn×d (with c classes)

Output: ≤ c− 1 discriminative directions and projections of X onto them

1. Find the class centroids {mj} and center the data locally.

2. Compute the within-class and between-class scatter matrices, i.e.,
Sw = X̃T X̃ and Sb = M̃TM̃.

3. Solve the generalized eigenvalue problem Sbv = λSwv to find all
nonzero eigenvectors Vk = [v1, . . . ,vk] (for some k ≤ c− 1)

4. Project the data X onto them Y = X ·Vk ∈ Rn×k.
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Linear Discriminant Analysis (LDA)

The singularity issue of Sw
So far, we have assumed that the total within-class scatter matrix Sw is
nonsingular, so that we can solve the LDA problem

max
v:‖v‖=1

vTSbv
vTSwv via Sbv = λSwv.

However, in many cases (especially when having high dimensional data),
the matrix Sw ∈ Rd×d is (nearly) singular.

The reason is often that the centered data points, i.e., the rows of X̃, do
not fully span all d dimensions, thus making rank(Sw) = rank(X̃) < d

(which implies that Sw is singular).
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Linear Discriminant Analysis (LDA)
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627th eigenvalue:
2.3258e-27
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Linear Discriminant Analysis (LDA)

How do we fix it?

A common way is to first apply global PCA to reduce the dimensionality
of the labeled data (all classes)

Ypca =
(
X− [m . . .m]T

)
·Vpca

and then perform LDA on the reduced data:

Zlda = Ypca ·Vlda ←− learned from Ypca
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Linear Discriminant Analysis (LDA)

Two other methods are to

• Use pseudoinverse instead:

S†wSbv = λv ←− S−1
w Sbv = λv

• Regularize Sw:

S(β)
w = Sw + βId

= QΛQT + βId
= Q (Λ + βId) QT

= Q diag(λ1 + β, . . . , λd + β) QT

where β > 0 is parameter whose value needs to be tuned.
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Linear Discriminant Analysis (LDA)

Other numerical issues

Similarly to PCA, one should pay attention to the following:

• Feature scaling: Standardize each feature to have mean zero and
standard deviation 1, so that they are on comparable scales:

Xnorm = normalize(X);

• Out of sample extension:

y0 = VTx0, where V lda←− X
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Linear Discriminant Analysis (LDA)

Experiment (Iris data)
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Linear Discriminant Analysis (LDA)

Experiment (MNIST handwritten digits)
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Linear Discriminant Analysis (LDA)

Comparison between PCA and LDA

PCA LDA
Model nonparametric* nonparametric*
Use labels? no (unsupervised) yes (supervised)
Criterion variance separation
#dimensions (k) any ≤ c− 1
Computing SVD generalized eigenvectors
Linear projection? yes (VT (x− x̄)) yes (VTx)
Nonlinear boundary can handle** cannot handle

*Both work the best with multivariate Gaussian samples
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Linear Discriminant Analysis (LDA)

**In the case of nonlinearly separated classes, PCA often works better
than LDA as the latter can only find at most c− 1 directions (insufficient
to preserve all the discriminative information in the data).

• LDA with k = 1: does not
work well;

• PCA with k = 1: does not
work well;

• PCA with k = 2: can preserve
all the nonlinear separation.
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