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This lecture is based on the following textbook sections:

e Chapter 10: 10.1 - 10.3

Outline of this presentation:
e Consequences of model misspecification
e Criteria for evaluating subset regression models

e Computational techniques for variable selection



Variable Selection and Model Building

Introduction
In previous chapters when performing regression, we assume that
e we have a very good idea of the basic form of the model, and

e we know all (or nearly all) of the regressors that should be used.

Our focus was on techniques to ensure that
e the functional form of the model was correct, and

e the underlying assumptions were not violated.
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Our basic strategy is as follows:
1. Fit the full model (with all of the regressors under consideration).

2. Perform a thorough analysis of this model, including a full residual
analysis.

3. Determine if transformations of the response or of some of the
regressors are necessary.

4. Use the t tests on the individual regressors to edit the model.

5. Perform a thorough analysis of the edited model, especially a residual
analysis, to determine the model’s adequacy.
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However, in most practical problems, we face a rather large pool of
candidate regressors, of which only a few are likely to be important.

Additionally, some of the important variables may be correlated with each
other, so we don't really need all of them (even though individually they
may appear important).

Finding an appropriate subset of regressors for the model is often called
the variable selection problem.
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Building a regression model that includes only a subset of the available
regressors involves two conflicting objectives:

(1) Use as many regressors as possible for accurate estimation /prediction;

(2) Use as few regressors as possible so that the model is simple, yet
still accurate.

The process of finding a model that is a compromise between these two
objectives is called selecting the "best” regression equation.

Unfortunately, there is no unique definition of “best”, and different variable
selection procedures frequently specify different subsets of the candidate
regressors as best.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 6/34




Variable Selection and Model Building

Consequences of model misspecification

Assume a population regression model consisting of K = k + r regressors

y=Po+ Bix1+ -+ BT + Brp1Thr1 + o B Thyr + €

to be retained to be deleted

The sample regression model is

y=XB+e= {Xp X"r} [gp] +e=X,08,+ X, +e€

where p = k + 1.
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For the full model, the least squares estimate of 3 is

IB* _ [gé] _ (X/X)—lxly

In particular, ﬁ; is an estimator of 3, and it is unbiased.

For the subset model,
Yy = Xp,Bp + €

the least squares of estimate of 3, is
Bp = (X;Xp)_lxgloy

We have thus obtained two estimators of 3): B; and Bp.
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As variables are deleted from the model, for the retained variables in X,

e we may potentially introduce bias into their coefficient estimates Bp

E(By) = (X, X,) "' X (X8, + X, ;)
= Bp+ (X, X,) XX, B,

unless the two sets of variables are orthogonal (X)X, = O).
e meanwhile, we may improve the variance (precision) of Elp

Overall, we could reduce the mean square error (MSE) of BP, if the deleted
variables have small effects.
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Criteria for Evaluating Subset Regression Models

Two key aspects of the variable selection problem are generating the subset
models and deciding if one subset is better than another.

We have the following evaluation criteria:
o Coefficient of determination R?

Adjusted R?

Residual mean square M Sges

Mallow's C), statistic

AIC and BIC
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Coefficient of determination

_ SSR —1_ SSRes
- SSr SSt

R2
R? can be used to compare subset regression models that have the same
number of predictors.

Generally, R? is not used as a criterion for choosing the number of regressors
to include in the model.
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Adjusted R?

9 n—1

Radj =1-

P2y _SSReS/(”_P)
Ty P

where p = k + 1 and k is the number of regressors (subset size).

This measure can be used to compare subset regression models with
different numbers of regressors.
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How to use Ridj for choosing the optimal subset of regressors:

e For each subset size k = 1,..., K, find the best k regressors that

24j)- Denote the maximum by RZ; (k).

maximize R* (and also Ry,

e Compare dej(k) for all k£ and select k such that Rgdj(k) is highest.

Adjusted R Squared

sted R Squared

Adiu

5 5 7 ] 9 10
Model Number
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Residual mean square

It can also be used as a model evaluating/selection criterion:

e Foreach subsetsize k = 1,..., K, find the best subset of k regressors
that minimizes M Sges. Denote the minimum by M Sgcs(k).

o Compare M Sges(k) for different k and select k such that M Sg.s(k)
is smallest, or approximately equal to that of the full model.

This criterion (minimum M Sg.s) is equivalent to the maximum adjusted

2 . 2 _1_ _MSpges _
R~ criterion, because Radj_l SSt/(n—1)
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Mallows’ C), statistic

1
szﬁSSRes(p) —n+ \2& (p=k+1)

fitting error penalty
It can be shown that
E(SSkes(p)) = >_(E(@) — E(w:)* + (n — p)o”
1as

If the model has zero bias (such as the OLS),

2
n — g
E(Cp):%—wr?p:p

(Otherwise, it will be bigger than p)
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Regression equations with little bias Co=p

will have values of C), near the line «B

C)p = p while those with substantial e A
bias will fall above this line.
Ce
Generally, small values of C), are
desirable (in the right plot, Model
C should be preferred to A and B).

To calculate C,, we need an unbi-

M-
o
[, =
(3] =
<l
[se] ol

ased estimate of o2. Frequently, we 0o 1

T -

use the residual mean square of the
full model for this purpose.
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Two more commonly-used model selection criteria:

e Akaike Information Criterion:
AIC = —2log(L) + 2p = nlog(SSges/n) + 2p
It is based on maximizing the expected entropy of the model.
e Bayesian Information Criterion:
BIC = —2log(L) + plog(n) = nlog(SSges/n) + plog(n)

This criterion is also based on information theory but set within a
Bayesian context. Comparing with AIC, it places a greater penalty
on adding regressors as the sample size increases.
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Computational Techniques for Variable Selection
e All possible regressions «— brute-force, exhaustive search
e Stepwise regression methods <— smarter, but no guarantee
— Forward selection
— Backward elimination
— Stepwise regression (hybrid scheme)
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All possible regressions

This procedure requires that the analyst fit all the regression equations
involving 1 candidate regressor, 2 candidate regressors, and so on.

If there are K candidate regressors, there are 2/ total equations to be
estimated and examined. <— not practical for large K

These equations are evaluated according to some suitable criterion and
the “best” regression model selected.

The R function REGSUBSETS() in the leaps package can be used to
perform all possible regressions.
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Example: The Hald Cement Data

Hald [1952] presents data concerning the heat evolved in calories per gram
of cement (y) as a function of the amount of each of four ingredients in
the mix: tricalcium aluminate (x1), tricalcium silicate (z3), tetracalcium
alumino ferrite (z3), and dicalcium silicate (x4).

The data set is rather small, containing only 13 observations.

Since there are K = 4 candidate regressors, there are 2* = 16 possible
regression equations.
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TABLE 10.1 Summary of All Possible Regressions for the Hald Cement Data

Number of

Regressors Regressors

in Model r in Model S5Sked(p) R: Risp MSkre(p) Gy
None 1 None 27157635 0 0 226.3136  442.92
1 2 X 1265.6867  0.53395  0.49158  115.0624  202.55
1 2 x; 906.3363  0.66627  0.63593 823942 14249
1 2 X3 1939.4005  0.28587 022095  176.3092  315.16
1 2 X4 883.8669  0.67459  0.64495 80.3515  138.73
2 3 xX3X; 57.9045 097868 097441 5.7904 2.68
2 3 XiX3 1227.0721  0.54817 045780  122.7073  198.10
2 3 X1X4 747621 097247 096697 7.4762 5.50
2 3 XoX3 4154427  0.84703  0.81644 41.5443 62.44
2 3 X2X4 868.8801  0.68006  0.61607 86.8880  138.23
2 3 X3xy 1757380 093529  0.92235 17.5738 22.37
3 4 X1X2X3 481106 098228 097638 5.3456 3.04
3 4 X1X2X4 47.9727 098234  0.97645 5.3303 3.02
3 4 XXXy 50.8361 098128 097504 5.6485 3.50
3 4 XpX3¥s 73.8145 097282 096376 8.2017 7.34
4 5 X1 X2X3X4 47.8636 0.98238  0.97356 5.9829 5.00
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TABLE 10.2 Least-Squares Estimates for All Possible Regressions (Hald Cement Data)

Variables in Model Bo B B2 B Bs
X 81.479 1.869

X 57.424 0.789

X3 110.203 -1.256

Xy 117.568 —-0.738
X% 52.577 1.468 0.662

X1X3 72.349 2.312 0.494

XX 103.097 1.440 —0.614
X3 72,075 0731 ~1.008

XaXy4 94.160 0.311 —0.457
Xaxy 131.282 —1.200 —0.724
Xxats 48194 1.696 0.657 0.250

oy 71.648 1452 0416 ~0.237
Xaxats 203.642 ~0.923 ~1.448 ~1.557
ety 111.684 1.052 ~0.410 ~0.643
X1X2X304 62.405 1.551 0.510 0.102 —0.144
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TABLE 10.3 Matrix of Simple Correlations for Hald’s
Data in Example 10.1

Xy X3 X3 Xy ¥
X1 1.0
X 0.229 1.0
X3 —0.824 —-0.139 1.0
Xy —0.245 —-0.973 0.030 1.0
¥ 0.731 0.816 —0.535 —0.821 1.0
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TABLE 10.4 Comparisons of Two Models for Hald’s Cement Data

Observation § = 52.58 + 1.468x; + 0.662x5 §=T1.65 +1.452x; + 0.416x, — 0.237x
i e ha [e/(1 — ha)] e ha [e/(1 - ha)P
1 ~1.5740 025119 44184 0.0617 0.52058 0.0166
2 ~1.0491 026189 20202 1.4327 0.27670 3.9235
3 ~1.5147 0.11890 29553  —1.8910 0.13315 47588
4 —1.6585 024225 47905  -1.8016 0.24431 5.6837
5 ~1.3925 0.08362 23001 02562 035733 0.1589
6 40475 0.11512 20.9221 3.8982 0.11737 19.5061
7 ~1.3031 036180 41627 14287 036341 5.0369
8 20754 024119 74806  —3.0919 0.34522 222977
9 1.8245 0.17195 4.9404 1.2818 0.20881 2.6247

10 1.3625 0.55002 9.1683 03539 0.65244 1.0368
11 32643 0.18402 16.0037 2.0977 0.32105 9.5458
12 0.8628 0.19666 1.1535 1.0556 0.20040 1.7428
13 —2.8934 0.21420 135579 —2.2247 0.25923 9.0194
PRESS x;. 1, = 93.8827 PRESS x;, x5, x, = 85.3516

R ediction = 0.9654, VIF, = 1.05, VIF; = 1.06.
PR3 siion = 0.9684, VIF, = 1.07, VIF, = 18.78, VIF, = 18.94.
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All possible regressions with a categorical predictor:

The REGSUBSETS() function can be used in the same way. However, in
this scenario, the categorical variable (with ¢ levels) is reduced to ¢ — 1
indicator variables (treated as new predictors), so that effectively there are
a total of (K — 1) + (£ — 1) predictors for forming subset models.

For certain subset size, it is possible that the best model of that size uses
only some but not all of the £ —1 indicator variables. If such a model turns
out to be the best overall, it still implies that the categorical variable is
selected by the final model, just that some of the ¢ — 1 indicator variables
have zero coefficients (which means that those levels are no different from
the reference level and they will share the same intercept).
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Stepwise regression methods

e Forward selection
e Backward elimination

e Stepwise regression (combination of forward and backward actions)
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Forward selection: add regressors from a candidate set {z1,...,zx},
one at a time, until certain stopping condition is met.

Cutoff needed: an
Step 0: Start without any regressor in the model (only the intercept)

Step 1: Add the most significant regressor to the model if the corresponding
F' statistic has a p-value < aqn:

7~ 95r(B; | Bo)
M Sges(Bo, Bj)’

Suppose z1 is added to the model.

ji=1,...,K
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Step 2: For each remaining regressor x;,j = 2,..., K, add the one with the
largest partial I statistic

e SSr(Ba2 | 1, o)
MSR@S(BOHBD/BQ)

(if the p-value is less than aiy, otherwise terminate the procedure).

Repeat the procedure with the remaining regressors until no regressor
can be added.
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Backward elimination: eliminate regressors one at a time.
Cutoff needed: agur
Step 0: Fit a model with all regressors

Step 1: Compute the partial F statistic for each regressor in the model
(given all other regressors) and remove the regressor with the largest
p-value if it exceeds the threshold agpyt

Step 2: Fit a new model with the remaining regressors, and repeat the above
procedure until no regressor can be eliminated from the model
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Stepwise regression: a combination of forward selection and backward
elimination actions

Cutoffs needed: ain, aour

— Start with no regressors in the model, and add regressors one at a
time (using the cutoff ayy)

< Each time a new regressor is added, check to see if any of the

previously added regressors may be eliminated from the model (using
the cutoff apur)

(O Repeat until no regressor can be added to the model
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Comments:

e Backward elimination is often a very good variable selection proce-
dure. It is particularly favored by analysts who like to see the effect
of including all the candidate regressors.

e Berk [1978] has noted that forward selection tends to agree with all
possible regressions for small subset sizes but not for large ones, while
backward elimination tends to agree with all possible regressions for
large subset sizes but not for small ones.

e The three procedures do not necessarily lead to the same final model.
e None of them guarantees to find the best subset regression model.
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Stepwise regression when categorical variables are present

Suppose there are K candidate predictors, among which there is a cate-
gorical predictor x; with £ levels.

The R functions for the three methods are used in the same way as for
continuous variables (as long as z; has been converted by as.factor()).

x; is treated as a single variable (not ¢ — 1 separate indicator variables)
and thus there is only a single partial F' statistic

_ 8Sm(8;|..)/(—1)
MSpes(B;,- )

F

and a single p-value (to be used to make the corresponding decision).
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