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Math 261A: Regression Theory & Methods

Simple Linear Regression

Dr. Guangliang Chen




This lecture is based on the following textbook sections:

e Chapter 2: 2.1 - 2.6

Outline of this presentation:

e The simple linear regression problem
e Least-square estimation

e Inference



Simple Linear Regression

The simple linear regression problem

Consider the following (population)
regression model

y=P0o+pPix+e Bo + B

where =

e x: predictor (fixed)

e 1 response (random) Bo: intercept, B;: slope

e ¢: random error/noise
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Simple Linear Regression

Sample regression model

Given a set of locations x1, ..., %y, i Ly=fo+ B
let the corresponding responses be Pl
yi:/BO‘i‘,lei‘i‘fi, izl:"'vn
where the errors ¢; have mean 0 and

variance o2

E(e;) =0, Var(e) = o2,

and additionally are uncorrelated: ! ' "

COV(GZ‘,EJ') =0,1#]
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Simple Linear Regression

In those same locations, let the ob- Y
servations of the responses also be

Y1,---,Yn (this is an abuse of nota- yi o
tion) such that we have a data set

{(@i,y:) |1 <i<n}.

The goal is to use the sample to es-

timate [o, $1 in some way (so as to i x
fit a line to the data) .

Remark. Depending on the context, the
notation y; can denote either a random
variable, or an observed value of it.
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Simple Linear Regression

Least-squares (LS) estimation

To estimate the regression coeffi- Y

cients 5y, 51, here we adopt the least

squares criterion: Yi
dof & Yi
. A N e A A
min S(Bo, B1) = D _(i—(Bo + Brzi))?
ﬁ()aﬁl i=1 5/_/ e
Yi

The corresponding minimizers are z; x

called least squares estimators.

) o y;: observation, ¥;: fitted value
Remark. Another way is to maximize the

likelihood of the sample (Sec 2.11).
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Simple Linear Regression

Notation: To solve the problem, we need to define some quantities first:

I R
$=E;$z’, y:ﬁ;yi

and

(z; — z)?

3
I
.MS

@
Il
=

él)
I
.M:

@
Il
—

(zi = T)(yi — )
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Simple Linear Regression

It can be shown that
n
2 -2
Spr = sz —nz*,
i=1
n
Sgcy = Z$1yz —nxy
i=1

Verify:
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Simple Linear Regression

Theorem 0.1. The LS estimators of the intercept and slope in the simple
linear regression model are

R _ oA _ oa S
ﬁozy_ﬁlxv Blzs_zz
Proof. Taking partial derivatives of
A A n A A
S(Bo, B1) =D _(yi — Bo — Pr:)?
i=1
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Simple Linear Regression

and setting them to zero gives that

oS n R .
—=-2) (yi—Bo—Pixi) =0
9Bo ;

oS " . A

— =2 (yi — Bo— Prwi)x; =0
9P ;

which can then be simplified to

Zyi =nf +312$i
inyi = Bozwi +Blz$?
The first equation can be rewritten as

y=po+ bz
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Simple Linear Regression

from which we obtain that
Bo =1 — P
Plugging it into the second equation yields that
Yowiyi= (§— bE)nz+ Py
and further that

ZSUiyi —nzy = P (Z ;- nf2>

Sf'”y Sacac

This thus completes the proof. O
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Simple Linear Regression

Remark. We make the following observations:

e The LS regression line always passes through the centroid (z,%) of
the data: y = Bo + Biz.

Y L
y = Po+ e
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Simple Linear Regression

e Alternative forms of the equation of the LS regression line are
y=(y— Aaz)+bz =j+ fi(z — 7)
g
Bo
To study the effect of different samples on the regression coefficients,

we regard the y; as random variables (in this case 7, Bo, B1 are also
random variables). It can be shown that (homework problem: 2.25)

15 o) = o2
Cov (3.51) =0, Cov (fo. 1) = —o* o
That is, _1],{;’] are uncorrelated, but 30,5’1 are not.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 13/70




Simple Linear Regression

e The residuals of the model are

eizyi—@izyi—(BoJrBlfCi) Zyi—(§+31($i—f))~

e > ¢; =0. This implies that >~ y; = > ¥;, and thus {g;} and {y;}
have the same mean.
Proof:
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Simple Linear Regression

o Zmiei =0, and Zg}zez =0
Proof:
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Simple Linear Regression

Example 0.1 (Toy data). Given a data set of 3 points: (0,1),(1,0), (2,2),
find the least-squares regression line.

—_
®

1 2
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Simple Linear Regression

Solution. First, z =1 =, and
Spe=» @7 —nEF’=5-3=2 Sy =) wiyi—nij=4-3=1

It follows that

A Sy 1 A a1
ﬁl—S—m—§7 Bo=1y 5155—5-
Thus, the regression line is given by
A A 1 1
y—,30+,31$—§+§£13
The fitted values and their residuals are
1 3 1
1 = — {Jo — 1 {Jla = — and = — = —1 = —
Y1 25 Y2 , Y3 2 €1 27 €2 , €3 2
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Simple Linear Regression

Example 0.2 (R demonstration). Consider the dataset that contains
weights and heights of 507 physically active individuals (247 men and 260
women).l We fit a regression line of weight (i) versus height (x) by R.

120 —

Weight (kg)
=1

150 160 170 180 190 200
Height (cm)

"http://jse.amstat.org/viin2/datasets.heinz.html
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Simple Linear Regression

y=-105.01125+1.01762x

100
L

Weight (kg)
El

T T T
150 160 170 180 190 200

Height (cm)

> # linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)

Call:
Im(formula = weight ~ height, data = mydata)

Residuals:

Min 1Q Median 3Q Max
-18.743 -6.402 -1.231 5.059 41.103
Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) -105.01125 7.53941 -13.93 <2e-16 ***
height 1.01762 0.04399 23.14  <2e-16 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 90.01 ‘*’ 0.05 ‘.” 0.1 ¢ ’ 1
Residual standard error: 9.308 on 505 degrees of freedom
Multiple R-squared: ©.5145, Adjusted R-squared: 0.5136
F-statistic: 535.2 on 1 and 505 DF, p-value: < 2.2e-16

> # plot the regression line on top of data
> plot(mydata$height, mydata$weight,

+ xlab="Height (cm)", ylab="Weight (kg)",
+ pch=16, col="blue",
+ main="y=-105.01125+1.01762x")

> abline(mymodel, col="red",lwd=3)
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Simple Linear Regression

Inference in simple linear regression

e Model parameters: /3, (intercept), 31 (slope), o2 (noise variance)

e Inference tasks (for each parameter above): point estimation,
interval estimation*, hypothesis testing*

e Inference of the mean response at any location xzq:

E(y | zo) = Bo + Bizo

*To perform the last two inference tasks, we will additionally assume that
the model errors ¢€; are normally and independently distributed with mean

) . iid
0 and variance 02, i.e., €1,..., €, ~ N(0,02).
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Simple Linear Regression

Point estimation in regression

Theorem 0.2. The LS estimators /3’0,31 are unbiased linear estimators of
the model parameters Sy, 81, that is,

E(fo) = Bo. E(B1) =5
Furthermore,
2

1 72 o
Sxa:

Var(fy) = o> <— + —) , Var(f) =

n Sp

Remark. The Gauss-Markov Theorem stats that the LS estimators /3’0,31
are the best linear unbiased estimators in that they have the smallest
possible variance (among all linear unbiased estimators of Sy, 51).
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Simple Linear Regression

Proof. Write

pr=t RO, BT

xrx xrx SCL‘QS'

It follows that
=Y iE(yi) =D cilBo+ Prai) = Bo Y ci+b1 Y ciwi = b
=0 =1

and

Var (3 c? Var =02 =

=0
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Simple Linear Regression

For Bo, it is unbiased for estimating 5y because
E(fo) = E(j — A1) = E() — E(B1)Z = (Bo + BrE) — B = fo.
Using the formula
Var(X —Y) = Var(X) + Var(Y') — 2Cov(X,Y),
we obtain that
Var(f3y) = Var(y) + Var(41z) — 2 Cov(y, 51 Z)

1 ~ « ~ .
== ZVar(yi) + 72 Var(f1) — 2z Cov(y, £1)
=0

1 5 502 o (1 22
=—no +r 5—=0"|—+5|.
n? Sea n Sz
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Simple Linear Regression

To estimate the noise variance o2, we need to define

e Total Sum of Squares

n

SSr=> (yi—¥)°
i=1

e Regression Sum of Squares

n

SSkr =3 (5 —§)°

=1

e Residual Sum of Squares

n

SShes =Y €2 = (yi — i)’
=1

i=1
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Simple Linear Regression

Y= [}0 + ,[3113

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 25/70



Simple Linear Regression

It can be shown that
SST = SSR + SSR@S

Proof:

zzyz y

= — Ui +9i — y)2

= yz +Z 0 — +22 g)

- SSRES + SSR + 2261,%

——
=0
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Simple Linear Regression

Another useful result is

Proof.
SSr =Y (5 — )
=>"((Bo + P1zi) — (Bo + £17))*
= ZB%(@ -

Yi y
A2
= 51 Szz-
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Simple Linear Regression

The following theorem indicates how to use the residual sum of squares to

estimate the error variance o2 when it is unknown.

Theorem 0.3. We have
E(SSpges) = (n — 2)0?

This implies that the residual mean square

SSRes

M Sges =
r n—2

is an unbiased estimator for o2.
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Simple Linear Regression

Proof. Write
SShes = 951 = Sk = (D v7 —ni®) = B Sus
Using the formula E(X?) = E(X)? + Var(X), we have

E(SSres) = > E(47) —nE(7*) —E(B}) S

o2 o2
—Z[/BO+131$2) +U} —n |[(Bo+ rT)* + (181 g )S:v:v
= (n — 2)o?
This implies that E(M Sges) = E(SSRes)/(n — 2) = o2, O
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Simple Linear Regression

Another way to use the sums of squares is to define a measure of the
goodness of fit of the regression line.

Def 0.1 (Coefficient of determination).

B2 _ SSk 1 SSRes

SSr SSt
Remark. The quantity 0 < R? < 1 indicates the proportion of variation of
the response that is explained by the regression line.
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Simple Linear Regression

Example 0.3 (Toy data). Consider again the toy data set that consists of
3 points: (0,1),(1,0), (2,2). We have fitted the LS regression line earlier.

It is straightforward to obtain that

5 (112 5 (1\? 3
SSRes:Zei = 5 +(_1) + 5 25
Accordingly, a point estimate of o2 is
MSpes = SSRes/(n —2) = 1.5
To compute the coefficient of determination, we also need to compute

SSt =3 (y; —9)? = 2. It follows that

. SSRes
SSr
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Simple Linear Regression

Example 0.4
From the R output:

(weight-height).

e The residual standard error is
d = 9.308;

e The residual mean square is
M Sges = 9.308% = 86.639.

e The coefficient of determina-
tion is RZ = 0.5145 (mean-
ing that the LS regression line
only captures 51.45% of the
total variation).

> # linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)

Call:
Im(formula = weight ~ height, data = mydata)

Residuals:
Min 1Q Median 3Q Max
-18.743 -6.402 -1.231 5.059 41.103
Coefficients:
Estimate Std. Error t value Pr(>1tl)
(Intercept) -105.01125 7.53941 -13.93 <2e-16 ***
1.01762 0.04399 23.14 <2e-16 ***

height

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ¢.” 0.1  ’
Residual standard error: 9.308 on 505 degrees of freedom
Multiple R-squared: ©.5145, Adjusted R-squared: 0.5136
F-statistic: 535.2 on 1 and 505 DF, p-value: < 2.2e-16

> # plot the regression line on top of data
> plot(mydata$height, mydata$weight,

+ xlab="Height (cm)", ylab="Weight (kg)",
+ pch=16, col="blue",
+ main="y=-105.01125+1.01762x")

> abline(mymodel, col="red",lwd=3)
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Simple Linear Regression

Summary: Point estimation in simple linear regression

Model Point Properties

parameters | estimators Bias Variance

Bo Bo=17— Pz unbiased o2 (% + 53”_—;)
5 Sz . o2

051 61 = T unbiased -

o? MSRes = % unbiased

Remark. For the mean response at xq:
E(y | z0) = Bo + Bro,

it is easy to see that Bo + leo is an unbiased point estimator.
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Simple Linear Regression

Next

We consider the following inference tasks in regression:

e Hypothesis testing

e Interval estimation
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Simple Linear Regression

The x?,t and F distributions

First, we need to review/introduce the following distributions:
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Simple Linear Regression

The ? distribution

x? is a special instance of Gamma: 7 = Gamma(a = %,)\ = %)

where k is a positive integer and commonly referred to as the degree of
freedom of the distribution. It can be shown that x? is the distribution of

X =22+ 4 Z2for Z1,..., 2 “ N(0,1).

Below are some known results about X ~ 7 (inferred from Gamma):

k
L

e Density: f(z) = W(k/z) (3) ez, x>0

e Properties: E(X) =k, Var(X) =2k
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X;

|
© AW

0.5

0.4t

??‘??‘??‘?”?‘?5“??‘

0.31

0.2

0.1

I

0.0- . : : : : ; ; —
0 1 2 3 4 5 6 7 8
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Simple Linear Regression

Student’s ¢ distribution
This is the distribution of a random variable of the form
A

VXV

Similarly, v is referred to as the degree of freedom of the t distribution.

T —

where Z ~ N(0,1), X ~ x2 are independent.

Density curves of the t-family are all unimodal, symmetric and bell-shaped,
like those of the normal distributions. Below are some results about
T ~ t(v):

v+1

e Density: f(:c):\/ﬁ—li(%)@—i—x—)_T, —00 < T < 00

v

e Properties: E(T) = 0, Var(T') = -%; (when v > 2).
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0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00

-4 -2 0 2 4
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Simple Linear Regression

Snedecor’s I distribution
This is the distribution of a random variable of the form

 Xy/dy

= X,/ where X; ~ x3,, X» ~ x3, are independent.
2/d>

What we know about X ~ F(dy,ds):

_di+dy

i,
° Density: fX(m) = B(d_ll i (%) 2 ,[1;'71_1 (1 + %[L’) 2 , T > 0
22

o E(X) = ;% (if dy > 2), and Var(X) = 220 HE (g g, > 4)
(d2-2)2(d2—1)
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2-5 ‘ |

d1=1, d2=1 ——

d1=2, d2=1 =—
2 | d1=5, 02=2 —

d1=10, d2=1 ——
15l d1=100, d2=100 1
1 -
0.5 \ —
0 | k\1‘4-1_
0 1 2 3 4 5

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 41/70



Simple Linear Regression

Additional normality assumption on the errors

To perform the hypothesis testing and interval estimation tasks in regres-
sion, we need to assume additionally that the errors ¢; are iid N(0,02).
This implies that

yi ~ N(Bo + Brag, 0°), i=1,...,n
and they are independent (but not identically distributed).

Since Bl is a linear combination of the random variables y;, under the
additional assumption we have

2
B ~N (ﬁbg—m) .
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Simple Linear Regression

Hypothesis testing in regression

Consider first the following hypothesis test about the slope parameter:

Hy : B1 = Bro, vs Hi:B1# Po

where 319 represents a particular value (e.g., 0) that 51 might take.

Under the normality assumption on the errors, we have the following result.

Theorem 0.4. At level «, a rejection region of the above test is

|B1—B1o]
V02/Sza
Br—Pio|

\/ MSRes/Sa:m

> Za/2, if 02 known;

> toj2n—2, if 02 unknown.
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Simple Linear Regression

Proof. When Hj is true, the distribution of Bl is

9
p1~N <ﬂ1o, g—m> .

Therefore, we can write down the following decision rule (at level a):

B — 510‘

—— >
02 /Sy Faf2

When o2 is unknown, we need to use its estimator M Sg.s instead. This
leads to a t test:

B — 510‘ .
——— > 14 /2.n—
\Y4 MSRes/Smc /2m=2
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Simple Linear Regression

Remark. \/0? /S, is the standard deviation of 1, while VM Sges/ Sz

is called the standard error of Bl:
Std(Bl) =\ 0'2/890307 56(31) =\ MSRes/S:rx~
Depending on whether o2 is given, the test statistic needed is

/51 B1o (o2 known), ty = 51 B1o
Std(53,) se(p1)

with corresponding decision rule:

(02 unknown)

| Zo| > 242 (0 known), lto] > tojan—2 (0 unknown)
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Simple Linear Regression

Remark. An important special case of the above hypothesis test is when
B10 = 0, which concerns the significance of regression:

Hy : 81 = 0 (There is no linear relationship between y and z)

Hi : 1 # 0 (There is a linear relationship between y and x)

Yy

X

:
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Example 0.5 (weight-height).
From the R output, we see that

e The value of the ¢ statistic for
testing Hy : (1 # 0 against
HO : ,81 =0is to = 2314,

e The p-value of the test is less
than 2e-16.

Thus, we can reject Hy (at level 1%)
and correspondingly conclude that
there is a significant linear relation-
ship between x and .

> # linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)

Call:
Im(formula = weight ~ height, data = mydata)

Residuals:
Min 1Q Median 3Q Max
-18.743 -6.402 -1.231 5.059 41.103
Coefficients:
Estimate Std. Error t value Pr(>1tl)
(Intercept) -105.01125 7.53941 -13.93 <2e-16 ***
1.01762 0.04399 23.14 <2e-16 ***

height

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ¢.” 0.1  ’
Residual standard error: 9.308 on 505 degrees of freedom
Multiple R-squared: ©.5145, Adjusted R-squared: 0.5136
F-statistic: 535.2 on 1 and 505 DF, p-value: < 2.2e-16

> # plot the regression line on top of data
> plot(mydata$height, mydata$weight,

+ xlab="Height (cm)", ylab="Weight (kg)",
+ pch=16, col="blue",
+ main="y=-105.01125+1.01762x")

> abline(mymodel, col="red",lwd=3)
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Another approach to testing the significance of regression is through the
Analysis of Variance (ANOVA):

SSp =SSR+ SSges, withdof: n—1=1+(n—-2)
We have previously defined the residual mean square
with E(MSges) = o
Define also the regression mean square
MSRr = SSg/1.
It can be shown that

E(MSg) = 0” + 1 Sua
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Observation: M Sy contains information about ;.
o E(MSR) =E(MSges) if 1 =0;
° E(MSR) > E(MSRQS) if 51 75 0.

As a result, large values of their ratio

MSgr SSr/1 (Ho true

Fo = MSpes  SShes/(n—2)

F1,n—2>
are evidence against Hg : 1 = 0.

Therefore, we have the following significance of regression test:

Reject Hy : 81 = 0 if and only if Fy > Fiy 12
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The ANOVA procedure is summarized in the following able.

Source of | Sum of Degrees of Mean  Test
variation squares freedom square statistic
Regression | SSr = 25, 1 MSr Fy= A%i’;
Residual SSRes n—2 MSges

Total SSt n—1
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Simple Linear Regression

Example 0.6 (weight-height).
From the R output, we see that

e The F statistic for testing Hy :
B1 = 0 against a two-sided al-
ternative is Fy = 535.2 with
1 and 505 degrees of freedom;

e The p-value of the test is less
than 2.2e-16.

Thus, we can conclude that 51 # 0,
i.e., there is a significant linear rela-
tionship between x and y.

> # linear regression (mydata is a data frame)
> mymodel<-lm(weight~height, data=mydata )
> summary(mymodel)

Call:
Im(formula = weight ~ height, data = mydata)

Residuals:
Min 1Q Median 3Q Max
-18.743 -6.402 -1.231 5.059 41.103
Coefficients:
Estimate Std. Error t value Pr(>1tl)
(Intercept) -105.01125 7.53941 -13.93 <2e-16 ***
1.01762 0.04399 23.14 <2e-16 ***

height

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ¢.” 0.1  ’
Residual standard error: 9.308 on 505 degrees of freedom
Multiple R-squared: ©.5145, Adjusted R-squared: 0.5136
F-statistic: 535.2 on 1 and 505 DF, p-value: < 2.2e-16

> # plot the regression line on top of data
> plot(mydata$height, mydata$weight,

+ xlab="Height (cm)", ylab="Weight (kg)",
+ pch=16, col="blue",
+ main="y=-105.01125+1.01762x")

> abline(mymodel, col="red",lwd=3)
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A more direct way of performing ANOVA in R is to use the anova function:

> anova(mymodel)
Analysis of Variance Table

Response: weight

Df Sum Sq Mean Sq F value Pr(>F)
height 1 46370 46370 535.21 < 2.2e-16 ***
Residuals 505 43753 87

Signif. codes: @ ‘***’ 0.001 ‘**’ @.01 ‘*’ .05 ‘.” 0.1 ‘ ’ 1
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Remark. The ANOVA F test is equivalent to the (two-sided) ¢ test regarding
whether 51 = 0 or not:
B% _ B%Sxx SSR/1

= = = == F
MSRes/Smc M SRes SSRes/(n - 2) 0

to
However, when one-sided alternatives such as
Hy:6:=0 vs Hy:51>0

are used, only the t test can be used:

B —0

V MSRes/S:cw

to = > tan—2 (02 unknown)
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For the hypothesis test about the intercept parameter [,

Ho: Bo=Poo, vs Hi: Bo# Boo
we have the following result.

Theorem 0.5. At level «, a rejection region of the test is

| Bo—Boo|

21, x2
g (n+S’zz>

| Bo—Boo|

\/MSRes (%‘i’%)

> Za /2, if 2 known;

> to/2n—2, if 02 unknown;
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Remark. The previous R output also contains the results of the correspond-
ing t-test for

Hy : By = 0 (The regression line passes through the origin)
H; : By # 0 (The regression line does not pass through the origin)

Yy

X
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Summary: hypothesis testing in regression

We covered the following tests with corresponding decision rules:

B1—p
e Hy:p1=piovs Hy: f1 # Bio: \/% > taj2n—2

e Significance of regression test (Hp : 81 =0 vs Hy : f1 #0)
L > t
V MSRes/Szz a/2’n_2

— ANOVA F-test: i > Foy o

— t-test:

e Hy: By = Boo vs Hi : By # Poo: [Bo—Pool — > ta/2n—2
\/MSRES(%"FZ_)

Szx
: :
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Interval estimation in regression

Under the normality assumptions, the 1 — « Cls for Sy, 51 are

o BoEtajon 2\/M5Res< +Sm>

i Bl + ta/2,n—2 V MSRes/sz

This is implemented in R through the CONFINT function:
> confint(mymodel, level=0.95)
2.5 % 97.5 %
(Intercept) -119.8237251 -90.198783
height 0.9311971 1.104036

We next construct a 1 — « confidence interval for the noise variance o2.
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interval for o2 is

Theorem 0.6. Under the normality assumptions, a level 1 — « confidence

(n —2)M Sges
Xz%,n—? ’ X%—%,n—?
Proof. It can be shown that
SSpes _ (n—=2)MSges
o2 o2 X
Thus,

n—2

—-2)MS
1—042P<X%%,n2 < (= 2)MShes

2
o2 < X%,n2> .
Solving the inequalities for o yields the desired result.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University

58/70



Simple Linear Regression

Example 0.7 (weight-height). A 95% confidence interval for o2 is

M M -9.3082 -9.3082
5052) SRes’ 5052 SRes _ 505 - 9.308 7 505 - 9.308 — (76.87, 98.40)
X025,505  X'975,505 569.1608 444.6268

R commands:

> qchisq(.975, 505)
[1] 569.1608

> pchisq(569.1608,505)
[1] 0.9750001

> qchisq(.025, 505)
[1] 444 .0268

:
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The mean response

A major use of a regression model is y="bo+ bz
to estimate the mean response at a LY | 0] .
particular location z = xg

E(y | x0) = Bo + B17o

Ty
Under the normality assumption, we obtain the following result.

Theorem 0.7. A 1 — « confidence interval for E(y | x¢) is

A A 1 xo — T)2
(BO + 511'0) + ta/?,n—2\/MSRes (— + M)
n Sz
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Proof. The point estimator of the mean response, BO + leo, is a linear
combination of the responses y;, thus having a normal distribution with
mean

E(fo + Sizo) = Bo + Pio
and variance
Var(fy + Bizo) = Var (?J + (o — f))
= Var (y) + Var (31) (o — z)?

o? o?

o

o1 (wo—2)°
-7 <n+ Sza
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Simple Linear Regression

It follows that

(Bo + Brxo) — (Bo + Bizo)
\/MSRes ﬁ (x?gz:)Q)

and consequently we can use the following equality

~lp—2

(Bo + Brzo) — (Bo + Bizo)
< t%,n—2
\/MSRes =+ (zo 2)? )

TT

l—-a=P _—n2<

to construct a level 1 — « confidence interval for 5y + S120. O
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Remark. The confidence interval for
the mean response is the shortest at
the location g = = and becomes
wider as x moves away from Z in
either direction.

Weight (kg)

y=-105.01125+1.01762x

.
T
150 160 170 180 190 200

Height (cm)
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Prediction of new observations

Another way of using a regression
model is to develop a prediction in-
terval for the future observation at

y= o+ Bz

some specified location = = xg:

Yo = Bo+Biroteo, €0~ N(0,07)

Zo
Theorem 0.8. A 1 — « prediction interval for the response yg at x = z is

30 4 A 1 xo — I)?
(50 + ﬁll'o) + ta/2,n—2\/MSRes <1 + E + (OS—)>
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Proof. First, note that a point estimator for the fixed component of g
(i.e., Bo + Bixo) is

Jo = Bo + Przo
Let ¥ = yg — §jo be the difference between the true response and the
point estimator for its fixed part. Then ¥ (as a linear combination of
Y0, Y1, - - -, Yn) is normally distributed with mean

U = E(yo) — E(Jo) = (Bo + f1z0) — (Bo + B1wo) = 0

and variance

S.’El‘
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We then have .
Yo — Yo

\/02 (141 + 22

and correspondingly,

~ N(0,1)

Yo — 9o
\/MSRes (141 + g2

~tp_o

Accordingly, a 1 — « prediction interval on a future observation yg at xg is

By + /3 1 _ )2
(Bo + Brwo) £ ta2 n—2\/MSReS (1 + o4 M)
’ n o Sw
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Remark. The prediction interval for
the response at all locations has a
similar pattern to the confidence in-
terval for the mean response but is

much wider.

Weight (kg)

y=-105.01125+1.01762x

Height (cm)
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Summary: interval estimation in regression

e 5o (intercept): BO + ta/2,n—2\/MSRes (% + 5__;)
* b1 (SIOPe): Bl + ta/2,n—2 V M SRes/See

e o2 (error variance): (

(n—2)MSges (n—2)MSges )

2 I 2
X%,n72 le%,n72

o E(y | z0): (Bo+ Pro) £ ta/z,n—z\/MSRes (% + (x%:;fP)

o 1o (response): (By + Biao) £ ta/Q,n_z\/MsRes (143 + )
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Some considerations in the use of regression

Read Section 2.9 to understand the following issues (they will be covered
in more depth later in this course):

Sleeping with my
shoes always glves
»me a headache

e Extrapolation

Buzzle.com

e Influential points

e
{ Weren't you
% drunk last

e Outliers \ nght?

Correlation does not imply causation

e Correlation does not imply
causation
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Further learning
e 2.10 Regression Through the Origin

e 2.11 Maximum Likelihood Estimation

2.12 Case Where the Regressor x Is Random

e Linear regression via gradient descent

Weighted least squares

S(Bo. B1) =D wilyi — Bo — Przi)?
i=1
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