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This lecture is based on the following textbook sections:

• Chapter 2: 2.1 - 2.6

Outline of this presentation:

• The simple linear regression problem

• Least-square estimation

• Inference



Simple Linear Regression

The simple linear regression problem

Consider the following (population)
regression model

y = β0 + β1x+ ε

where

• x: predictor (fixed)

• y: response (random)

• ε: random error/noise

x

β0 + β1x b

y

β0: intercept, β1: slope
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Simple Linear Regression

Sample regression model

Given a set of locations x1, . . . , xn,
let the corresponding responses be

yi = β0 + β1xi + εi, i = 1, . . . , n

where the errors εi have mean 0 and
variance σ2:

E(εi) = 0, Var(εi) = σ2,

and additionally are uncorrelated:

Cov(εi, εj) = 0, i 6= j

y = β0 + β1x

xix1 xn
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Simple Linear Regression

In those same locations, let the ob-
servations of the responses also be
y1, . . . , yn (this is an abuse of nota-
tion) such that we have a data set
{(xi, yi) | 1 ≤ i ≤ n}.

The goal is to use the sample to es-
timate β0, β1 in some way (so as to
fit a line to the data) .

Remark. Depending on the context, the
notation yi can denote either a random
variable, or an observed value of it.

b
b

b
b

b

b

b

y

xxi

yi b

b
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Simple Linear Regression

Least-squares (LS) estimation

To estimate the regression coeffi-
cients β0, β1, here we adopt the least
squares criterion:

min
β̂0,β̂1

S(β̂0, β̂1) def=
n∑
i=1

(yi−(β̂0 + β̂1xi︸ ︷︷ ︸
ŷi

))2

The corresponding minimizers are
called least squares estimators.

Remark. Another way is to maximize the
likelihood of the sample (Sec 2.11).

b
b

b
b

b

b

b

y

xxi

yi

ŷi

y = β̂0 + β̂1x

b

b

yi: observation, ŷi: fitted value
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Simple Linear Regression

Notation: To solve the problem, we need to define some quantities first:

x̄ = 1
n

n∑
i=1

xi, ȳ = 1
n

n∑
i=1

yi

and

Sxx =
n∑
i=1

(xi − x̄)2

Sxy =
n∑
i=1

(xi − x̄)(yi − ȳ)
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Simple Linear Regression

It can be shown that

Sxx =
n∑
i=1

x2
i − nx̄2,

Sxy =
n∑
i=1

xiyi − nx̄ȳ

Verify :
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Simple Linear Regression

Theorem 0.1. The LS estimators of the intercept and slope in the simple
linear regression model are

β̂0 = ȳ − β̂1x̄, β̂1 = Sxy
Sxx

Proof. Taking partial derivatives of

S(β̂0, β̂1) =
n∑
i=1

(yi − β̂0 − β̂1xi)2
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Simple Linear Regression

and setting them to zero gives that

∂S

∂β̂0
= −2

n∑
i=1

(yi − β̂0 − β̂1xi) = 0

∂S

∂β̂1
= −2

n∑
i=1

(yi − β̂0 − β̂1xi)xi = 0

which can then be simplified to∑
yi = nβ̂0 + β̂1

∑
xi∑

xiyi = β̂0
∑

xi + β̂1
∑

x2
i

The first equation can be rewritten as

ȳ = β̂0 + β̂1x̄
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Simple Linear Regression

from which we obtain that

β̂0 = ȳ − β̂1x̄

Plugging it into the second equation yields that∑
xiyi = (ȳ − β̂1x̄)nx̄+ β̂1

∑
x2
i

and further that ∑
xiyi − nx̄ȳ︸ ︷︷ ︸
Sxy

= β̂1
(∑

x2
i − nx̄2

)
︸ ︷︷ ︸

Sxx

This thus completes the proof.
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Simple Linear Regression

Remark. We make the following observations:

• The LS regression line always passes through the centroid (x̄, ȳ) of
the data: ȳ = β̂0 + β̂1x̄.
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Simple Linear Regression

• Alternative forms of the equation of the LS regression line are

y = (ȳ − β̂1x̄)︸ ︷︷ ︸
β̂0

+β̂1x = ȳ + β̂1(x− x̄)

To study the effect of different samples on the regression coefficients,
we regard the yi as random variables (in this case ȳ, β̂0, β̂1 are also
random variables). It can be shown that (homework problem: 2.25)

Cov
(
ȳ, β̂1

)
= 0, Cov

(
β̂0, β̂1

)
= −σ2 x̄

Sxx

That is, ȳ, β̂1 are uncorrelated, but β̂0, β̂1 are not.
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Simple Linear Regression

• The residuals of the model are

ei = yi − ŷi = yi −
(
β̂0 + β̂1xi

)
= yi −

(
ȳ + β̂1(xi − x̄)

)
.

• ∑ ei = 0. This implies that
∑
yi =

∑
ŷi, and thus {ŷi} and {yi}

have the same mean.
Proof :
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Simple Linear Regression

• ∑xiei = 0, and
∑
ŷiei = 0

Proof :
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Simple Linear Regression

Example 0.1 (Toy data). Given a data set of 3 points: (0, 1), (1, 0), (2, 2),
find the least-squares regression line.

b

b

b
y

x

2

2

1

1
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Simple Linear Regression

Solution. First, x̄ = 1 = ȳ, and

Sxx =
∑

x2
i − nx̄2 = 5− 3 = 2, Sxy =

∑
xiyi − nx̄ȳ = 4− 3 = 1.

It follows that

β̂1 = Sxy
Sxx

= 1
2 , β̂0 = ȳ − β̂1x̄ = 1

2 .

Thus, the regression line is given by

y = β̂0 + β̂1x = 1
2 + 1

2x.

The fitted values and their residuals are

ŷ1 = 1
2 , ŷ2 = 1, ŷ3 = 3

2 and e1 = 1
2 , e2 = −1, e3 = 1

2
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Simple Linear Regression

Example 0.2 (R demonstration). Consider the dataset that contains
weights and heights of 507 physically active individuals (247 men and 260
women).1 We fit a regression line of weight (y) versus height (x) by R.

1http://jse.amstat.org/v11n2/datasets.heinz.html
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Simple Linear Regression

Inference in simple linear regression
• Model parameters: β0 (intercept), β1 (slope), σ2 (noise variance)

• Inference tasks (for each parameter above): point estimation,
interval estimation*, hypothesis testing*

• Inference of the mean response at any location x0:

E(y | x0) = β0 + β1x0

*To perform the last two inference tasks, we will additionally assume that
the model errors εi are normally and independently distributed with mean
0 and variance σ2, i.e., ε1, . . . , εn

iid∼ N(0, σ2).
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Simple Linear Regression

Point estimation in regression

Theorem 0.2. The LS estimators β̂0, β̂1 are unbiased linear estimators of
the model parameters β0, β1, that is,

E(β̂0) = β0, E(β̂1) = β1

Furthermore,

Var(β̂0) = σ2
(

1
n

+ x̄2

Sxx

)
, Var(β̂1) = σ2

Sxx

Remark. The Gauss-Markov Theorem stats that the LS estimators β̂0, β̂1
are the best linear unbiased estimators in that they have the smallest
possible variance (among all linear unbiased estimators of β0, β1).
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Simple Linear Regression

Proof. Write

β̂1 = Sxy
Sxx

=
∑

(xi − x̄)yi
Sxx

=
∑

ciyi, ci = xi − x̄
Sxx

It follows that

E(β̂1) =
∑

ciE(yi) =
∑

ci(β0 + β1xi) = β0
∑

ci︸ ︷︷ ︸
=0

+β1
∑

cixi︸ ︷︷ ︸
=1

= β1

and
Var(β̂1) =

∑
c2
i Var(yi)︸ ︷︷ ︸

=σ2

= σ2∑ c2
i = σ2 · 1

Sxx
= σ2

Sxx
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Simple Linear Regression

For β̂0, it is unbiased for estimating β0 because

E(β̂0) = E(ȳ − β̂1x̄) = E(ȳ)− E(β̂1)x̄ = (β0 + β1x̄)− β1x̄ = β0.

Using the formula

Var(X − Y ) = Var(X) + Var(Y )− 2Cov(X,Y ),

we obtain that

Var(β̂0) = Var(ȳ) + Var(β̂1x̄)− 2 Cov(ȳ, β̂1x̄)

= 1
n2

∑
Var(yi) + x̄2 Var(β̂1)− 2x̄ Cov(ȳ, β̂1)︸ ︷︷ ︸

=0

= 1
n2 nσ

2 + x̄2 σ2

Sxx
= σ2

(
1
n

+ x̄2

Sxx

)
.
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Simple Linear Regression

To estimate the noise variance σ2, we need to define

• Total Sum of Squares

SST =
n∑
i=1

(yi − ȳ)2

• Regression Sum of Squares

SSR =
n∑
i=1

(ŷi − ȳ)2

• Residual Sum of Squares

SSRes =
n∑
i=1

e2
i =

n∑
i=1

(yi − ŷi)2
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Simple Linear Regression

It can be shown that
SST = SSR + SSRes

Proof :

SST =
∑

(yi − ȳ)2

=
∑

(yi − ŷi + ŷi − ȳ)2

=
∑

(yi − ŷi)2 +
∑

(ŷi − ȳ)2 + 2
∑

(yi − ŷi)(ŷi − ȳ)

= SSRes + SSR + 2
∑

eiŷi︸ ︷︷ ︸
=0
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Simple Linear Regression

Another useful result is
SSR = β̂2

1Sxx

Proof.

SSR =
∑

(ŷi − ȳ)2

=
∑

((β̂0 + β̂1xi)︸ ︷︷ ︸
ŷi

− (β̂0 + β̂1x̄)︸ ︷︷ ︸
ȳ

)2

=
∑

β̂2
1(xi − x̄)2

= β̂2
1 Sxx.
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Simple Linear Regression

The following theorem indicates how to use the residual sum of squares to
estimate the error variance σ2 when it is unknown.

Theorem 0.3. We have

E(SSRes) = (n− 2)σ2

This implies that the residual mean square

MSRes = SSRes
n− 2

is an unbiased estimator for σ2.
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Simple Linear Regression

Proof. Write

SSRes = SST − SSR =
(∑

y2
i − nȳ2

)
− β̂2

1 Sxx

Using the formula E(X2) = E(X)2 + Var(X), we have

E(SSRes) =
∑

E
(
y2
i

)
− nE

(
ȳ2
)
− E

(
β̂2

1

)
Sxx

=
∑[

(β0 + β1xi)2 + σ2
]
− n

[
(β0 + β1x̄)2 + σ2

n

]
−
(
β2

1 + σ2

Sxx

)
Sxx

= (n− 2)σ2.

This implies that E(MSRes) = E(SSRes)/(n− 2) = σ2.
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Simple Linear Regression

Another way to use the sums of squares is to define a measure of the
goodness of fit of the regression line.

Def 0.1 (Coefficient of determination).

R2 = SSR
SST

= 1− SSRes
SST

Remark. The quantity 0 ≤ R2 ≤ 1 indicates the proportion of variation of
the response that is explained by the regression line.
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Simple Linear Regression

Example 0.3 (Toy data). Consider again the toy data set that consists of
3 points: (0, 1), (1, 0), (2, 2). We have fitted the LS regression line earlier.

It is straightforward to obtain that

SSRes =
∑

e2
i =

(1
2

)2
+ (−1)2 +

(1
2

)2
= 3

2 .

Accordingly, a point estimate of σ2 is

MSRes = SSRes/(n− 2) = 1.5

To compute the coefficient of determination, we also need to compute
SST =

∑
(yi − ȳ)2 = 2. It follows that

R2 = 1− SSRes
SST

= 1− 1.5
2 = 0.25
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Simple Linear Regression

Example 0.4 (weight-height).
From the R output:

• The residual standard error is
σ̂ = 9.308;

• The residual mean square is
MSRes = 9.3082 = 86.639.

• The coefficient of determina-
tion is R2 = 0.5145 (mean-
ing that the LS regression line
only captures 51.45% of the
total variation).
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Simple Linear Regression

Summary: Point estimation in simple linear regression

Model Point Properties
parameters estimators Bias Variance
β0 β̂0 = ȳ − β̂1x̄ unbiased σ2

(
1
n + x̄2

Sxx

)
β1 β̂1 = Sxy

Sxx
unbiased σ2

Sxx

σ2 MSRes = SSRes
n−2 unbiased

Remark. For the mean response at x0:

E(y | x0) = β0 + β1x0,

it is easy to see that β̂0 + β̂1x0 is an unbiased point estimator.
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Simple Linear Regression

Next

We consider the following inference tasks in regression:

• Hypothesis testing

• Interval estimation
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Simple Linear Regression

The χ2, t and F distributions

First, we need to review/introduce the following distributions:

• χ2

• t

• F
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Simple Linear Regression

The χ2 distribution

χ2 is a special instance of Gamma: χ2
k = Gamma(α = k

2 , λ = 1
2),

where k is a positive integer and commonly referred to as the degree of
freedom of the distribution. It can be shown that χ2

k is the distribution of
X = Z2

1 + · · ·+ Z2
k for Z1, . . . , Zk

iid∼ N(0, 1).

Below are some known results about X ∼ χ2
k (inferred from Gamma):

• Density: f(x) = 1
2k/2 Γ(k/2)

(
x
2
) k

2−1
e−

x
2 , x > 0

• Properties: E(X) = k, Var(X) = 2k

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 36/70
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Student’s t distribution
This is the distribution of a random variable of the form

T = Z√
X/ν

, where Z ∼ N(0, 1), X ∼ χ2
ν are independent.

Similarly, ν is referred to as the degree of freedom of the t distribution.

Density curves of the t-family are all unimodal, symmetric and bell-shaped,
like those of the normal distributions. Below are some results about
T ∼ t(ν):

• Density: f(x) = Γ( ν+1
2 )√

νπ Γ( ν2 )

(
1 + x2

ν

)− ν+1
2 , −∞ < x <∞

• Properties: E(T ) = 0, Var(T ) = ν
ν−2 (when ν > 2).
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Simple Linear Regression

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 39/70



Simple Linear Regression

Snedecor’s F distribution

This is the distribution of a random variable of the form

X = X1/d1
X2/d2

, where X1 ∼ χ2
d1 , X2 ∼ χ2

d2 are independent.

What we know about X ∼ F(d1, d2):

• Density: fX(x) = 1
B( d12 ,

d2
2 )

(
d1
d2

) d1
2 x

d1
2 −1

(
1 + d1

d2
x
)− d1+d2

2 , x > 0

• E(X) = d2
d2−2 (if d2 > 2), and Var(X) = 2d2

2(d1+d2−2)
d1(d2−2)2(d2−4) (if d2 > 4)
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Additional normality assumption on the errors

To perform the hypothesis testing and interval estimation tasks in regres-
sion, we need to assume additionally that the errors εi are iid N(0, σ2).
This implies that

yi ∼ N(β0 + β1xi, σ
2), i = 1, . . . , n

and they are independent (but not identically distributed).

Since β̂1 is a linear combination of the random variables yi, under the
additional assumption we have

β̂1 ∼ N
(
β1,

σ2

Sxx

)
.
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Hypothesis testing in regression

Consider first the following hypothesis test about the slope parameter:

H0 : β1 = β10, vs H1 : β1 6= β10

where β10 represents a particular value (e.g., 0) that β1 might take.

Under the normality assumption on the errors, we have the following result.

Theorem 0.4. At level α, a rejection region of the above test is
|β̂1−β10|√
σ2/Sxx

> zα/2, if σ2 known;
|β̂1−β10|√
MSRes/Sxx

> tα/2,n−2, if σ2 unknown.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 43/70
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Proof. When H0 is true, the distribution of β̂1 is

β̂1 ∼ N
(
β10,

σ2

Sxx

)
.

Therefore, we can write down the following decision rule (at level α):∣∣∣β̂1 − β10
∣∣∣√

σ2/Sxx
> zα/2

When σ2 is unknown, we need to use its estimator MSRes instead. This
leads to a t test: ∣∣∣β̂1 − β10

∣∣∣√
MSRes/Sxx

> tα/2,n−2

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 44/70
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Remark.
√
σ2/Sxx is the standard deviation of β̂1, while

√
MSRes/Sxx

is called the standard error of β̂1:

Std(β̂1) =
√
σ2/Sxx, se(β̂1) =

√
MSRes/Sxx.

Depending on whether σ2 is given, the test statistic needed is

Z0 = β̂1 − β10

Std(β̂1)
(σ2 known), t0 = β̂1 − β10

se(β̂1)
(σ2 unknown)

with corresponding decision rule:

|Z0| > zα/2 (σ2 known), |t0| > tα/2,n−2 (σ2 unknown)
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Remark. An important special case of the above hypothesis test is when
β10 = 0, which concerns the significance of regression:

H0 : β1 = 0 (There is no linear relationship between y and x)
H1 : β1 6= 0 (There is a linear relationship between y and x)

b
b

b

b
bb

b

y

x

b

b
b

b
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Example 0.5 (weight-height).
From the R output, we see that

• The value of the t statistic for
testing H0 : β1 6= 0 against
H0 : β1 = 0 is t0 = 23.14;

• The p-value of the test is less
than 2e-16.

Thus, we can reject H0 (at level 1%)
and correspondingly conclude that
there is a significant linear relation-
ship between x and y.
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Another approach to testing the significance of regression is through the
Analysis of Variance (ANOVA):

SST = SSR + SSRes, with d.o.f.: n− 1 = 1 + (n− 2)

We have previously defined the residual mean square

MSRes = SSRes
n− 2 with E(MSRes) = σ2

Define also the regression mean square

MSR = SSR/1.

It can be shown that

E(MSR) = σ2 + β2
1Sxx
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Observation: MSR contains information about β1.

• E(MSR) = E(MSRes) if β1 = 0;

• E(MSR) > E(MSRes) if β1 6= 0.

As a result, large values of their ratio

F0 = MSR
MSRes

= SSR/1
SSRes/(n− 2)

(
H0 true∼ F1,n−2

)
are evidence against H0 : β1 = 0.

Therefore, we have the following significance of regression test:

Reject H0 : β1 = 0 if and only if F0 > Fα,1,n−2
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The ANOVA procedure is summarized in the following able.

Source of Sum of Degrees of Mean Test
variation squares freedom square statistic
Regression SSR = β̂2

1Sxx 1 MSR F0 = MSR
MSRes

Residual SSRes n− 2 MSRes
Total SST n− 1
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Example 0.6 (weight-height).
From the R output, we see that

• The F statistic for testing H0 :
β1 = 0 against a two-sided al-
ternative is F0 = 535.2 with
1 and 505 degrees of freedom;

• The p-value of the test is less
than 2.2e-16.

Thus, we can conclude that β1 6= 0,
i.e., there is a significant linear rela-
tionship between x and y.
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A more direct way of performing ANOVA in R is to use the anova function:
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Remark. The ANOVA F test is equivalent to the (two-sided) t test regarding
whether β1 = 0 or not:

t20 = β̂2
1

MSRes/Sxx
= β̂2

1Sxx
MSRes

= SSR/1
SSRes/(n− 2) = F0

However, when one-sided alternatives such as

H0 : β1 = 0 vs H1 : β1 > 0

are used, only the t test can be used:

t0 = β̂1 − 0√
MSRes/Sxx

> tα,n−2 (σ2 unknown)

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 53/70
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For the hypothesis test about the intercept parameter β0,

H0 : β0 = β00, vs H1 : β0 6= β00

we have the following result.

Theorem 0.5. At level α, a rejection region of the test is

|β̂0−β00|√
σ2
(

1
n

+ x̄2
Sxx

) > zα/2, if σ2 known;

|β̂0−β00|√
MSRes

(
1
n

+ x̄2
Sxx

) > tα/2,n−2, if σ2 unknown;
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Remark. The previous R output also contains the results of the correspond-
ing t-test for

H0 : β0 = 0 (The regression line passes through the origin)
H1 : β0 6= 0 (The regression line does not pass through the origin)

b

b
b

b
b

b

b

y

x

b

b

b
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Summary: hypothesis testing in regression

We covered the following tests with corresponding decision rules:

• H0 : β1 = β10 vs H1 : β1 6= β10: |β̂1−β10|√
MSRes/Sxx

> tα/2,n−2

• Significance of regression test (H0 : β1 = 0 vs H1 : β1 6= 0)

– t-test: |β̂1|√
MSRes/Sxx

> tα/2,n−2

– ANOVA F -test: MSR
MSRes

> Fα,1,n−2

• H0 : β0 = β00 vs H1 : β0 6= β00: |β̂0−β00|√
MSRes( 1

n
+ x̄2
Sxx

)
> tα/2,n−2
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Interval estimation in regression

Under the normality assumptions, the 1− α CIs for β0, β1 are

• β̂0 ± tα/2,n−2

√
MSRes

(
1
n + x̄2

Sxx

)
• β̂1 ± tα/2,n−2

√
MSRes/Sxx

This is implemented in R through the confint function:

We next construct a 1− α confidence interval for the noise variance σ2.
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Theorem 0.6. Under the normality assumptions, a level 1− α confidence
interval for σ2 is (n− 2)MSRes

χ2
α
2 , n−2

,
(n− 2)MSRes
χ2

1−α2 , n−2


Proof. It can be shown that

SSRes
σ2 = (n− 2)MSRes

σ2 ∼ χ2
n−2.

Thus,

1− α = P

(
χ2

1−α2 , n−2 <
(n− 2)MSRes

σ2 < χ2
α
2 , n−2

)
.

Solving the inequalities for σ2 yields the desired result.
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Example 0.7 (weight-height). A 95% confidence interval for σ2 is(
505MSRes

χ2
.025, 505

,
505MSRes

χ2
.975,505

)
=
(

505 · 9.3082

569.1608 ,
505 · 9.3082

444.6268

)
= (76.87, 98.40)

R commands:
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The mean response
A major use of a regression model is
to estimate the mean response at a
particular location x = x0

E(y | x0) = β0 + β1x0
x0

E(y | x0)

y = β0 + β1x

b

Under the normality assumption, we obtain the following result.

Theorem 0.7. A 1− α confidence interval for E(y | x0) is

(β̂0 + β̂1x0)± tα/2,n−2

√
MSRes

( 1
n

+ (x0 − x̄)2

Sxx

)
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Proof. The point estimator of the mean response, β̂0 + β̂1x0, is a linear
combination of the responses yi, thus having a normal distribution with
mean

E(β̂0 + β̂1x0) = β0 + β1x0

and variance

Var(β̂0 + β̂1x0) = Var
(
ȳ + β̂1(x0 − x̄)

)
= Var (ȳ) + Var

(
β̂1
)

(x0 − x̄)2

= σ2

n
+ σ2

Sxx
(x0 − x̄)2

= σ2
(

1
n

+ (x0 − x̄)2

Sxx

)
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It follows that
(β̂0 + β̂1x0)− (β0 + β1x0)√

MSRes
(

1
n + (x0−x̄)2

Sxx

) ∼ tn−2

and consequently we can use the following equality

1− α = P

−tα2 , n−2 <
(β̂0 + β̂1x0)− (β0 + β1x0)√

MSRes
(

1
n + (x0−x̄)2

Sxx

) < tα
2 , n−2


to construct a level 1− α confidence interval for β0 + β1x0.
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Remark. The confidence interval for
the mean response is the shortest at
the location x0 = x̄ and becomes
wider as x moves away from x̄ in
either direction.
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Prediction of new observations

Another way of using a regression
model is to develop a prediction in-
terval for the future observation at
some specified location x = x0:

y0 = β0+β1x0+ε0, ε0 ∼ N(0, σ2)
x0

y = β0 + β1x

Theorem 0.8. A 1− α prediction interval for the response y0 at x = x0 is

(β̂0 + β̂1x0)± tα/2,n−2

√
MSRes

(
1 + 1

n
+ (x0 − x̄)2

Sxx

)
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Proof. First, note that a point estimator for the fixed component of y0
(i.e., β0 + β1x0) is

ŷ0 = β̂0 + β̂1x0

Let Ψ = y0 − ŷ0 be the difference between the true response and the
point estimator for its fixed part. Then Ψ (as a linear combination of
y0, y1, . . . , yn) is normally distributed with mean

Ψ = E(y0)− E(ŷ0) = (β0 + β1x0)− (β0 + β1x0) = 0

and variance

Var(Ψ) = Var(y0) + Var(ŷ0) = σ2
(

1 + 1
n

+ (x0 − x̄)2

Sxx

)
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We then have
y0 − ŷ0√

σ2
(
1 + 1

n + (x0−x̄)2

Sxx

) ∼ N(0, 1)

and correspondingly,

y0 − ŷ0√
MSRes

(
1 + 1

n + (x0−x̄)2

Sxx

) ∼ tn−2

Accordingly, a 1−α prediction interval on a future observation y0 at x0 is

(β̂0 + β̂1x0)± tα/2, n−2

√
MSRes

(
1 + 1

n
+ (x0 − x̄)2

Sxx

)
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Remark. The prediction interval for
the response at all locations has a
similar pattern to the confidence in-
terval for the mean response but is
much wider.
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Summary: interval estimation in regression

• β0 (intercept): β̂0 ± tα/2,n−2

√
MSRes

(
1
n + x̄2

Sxx

)
• β1 (slope): β̂1 ± tα/2,n−2

√
MSRes/Sxx

• σ2 (error variance):
(

(n−2)MSRes
χ2
α
2 ,n−2

, (n−2)MSRes
χ2

1−α
2 ,n−2

)

• E(y | x0): (β̂0 + β̂1x0)± tα/2,n−2

√
MSRes

(
1
n + (x0−x̄)2

Sxx

)
• y0 (response): (β̂0 + β̂1x0)± tα/2,n−2

√
MSRes

(
1 + 1

n + (x0−x̄)2

Sxx

)
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Some considerations in the use of regression
Read Section 2.9 to understand the following issues (they will be covered
in more depth later in this course):

• Extrapolation

• Influential points

• Outliers

• Correlation does not imply
causation
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Further learning
• 2.10 Regression Through the Origin

• 2.11 Maximum Likelihood Estimation

• 2.12 Case Where the Regressor x Is Random

• Linear regression via gradient descent

• Weighted least squares

S(β̂0, β̂1) =
n∑
i=1

wi(yi − β̂0 − β̂1xi)2
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