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This lecture is based on the following textbook sections:

• Chapter 4: 4.1 – 4.3, 4.5

Outline of this presentation:

• Introduction

• Residual analysis

• Residual plots

• Lack of fit tests

• Summary



Model Adequacy Checking

Introduction
The major assumptions we have made in linear regression models

y = Xβ + ε

are

• The relationship between the response and regressors is linear.

• The error term ε has zero mean (no need to check).

• The error term ε has constant variance σ2.

• The errors are uncorrelated.

• The errors are normally distributed.
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Model Adequacy Checking

We present several methods useful for diagnosing violations of the regression
assumptions, by examining the model residuals:

e = y− ŷ = y−Xβ̂

That is,
ei = yi − ŷi, i = 1, . . . , n

Methods for dealing with model inadequacies, as well as additional, more
sophisticated diagnostics, are discussed in Chapters 5 and 6.
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Residual analysis

The residuals e = (e1, . . . , en)′ can
be shown to satisfy

X′e = 0

That is, e is orthogonal to the
columns of X (predictors).

Proof.

X′e = X′(y−Xβ̂)
= X′y−X′Xβ̂

= 0.

Geometric intuition:

b y

ŷ = Hy
b

Col(X)

b
0

e = (I−H)y
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Model Adequacy Checking

More insights about e1, . . . , en:

• They can be viewed as observations of the model errors ε1, . . . , εn

• They have zero mean because
∑
ei = 0.

• They are not independent with only n−p degrees of freedom because
there are p equations constraining the residuals ei:

X′e = 0

• They can be used to form an unbiased estimator for σ2 as follows:

MSE = SSRes
n− p

=
∑
e2
i

n− p
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Model Adequacy Checking

Methods of scaling residuals

We introduce a few methods for scaling residuals, as they need to be
looked at “relative to” the standard deviation of the model error σ:

• Standardized residuals, or (internally) Studentized residuals

• Externally Studentized residuals (or R-Student)

Remark. Since we do not know the true value of σ2, we will compare the
residuals against its point estimate MSRes.
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Model Adequacy Checking

Assume a collection of residuals ei from fitting a linear regression model
to a data set.

A simple way to scale them is as follows:

di = ei√
MSRes

, i = 1, . . . , n

The normalized residuals di also have mean zero and are expected to be
between -3 and 3 for most observations.

However, this is not a correct way to standardize the residuals (note that
the book incorrectly calls di the standardized residuals).
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To correctly standardize the residuals, we need to obtain the exact standard
deviation of ei.

Since
e = y− ŷ = y−Hy = (I−H)y

we have

Var(e) = (I−H) Var(y)︸ ︷︷ ︸
=σ2I

(I−H)′ = σ2(I−H).

That is,

Var(ei) = σ2(1− hii), Cov(ei, ej) = −σ2hij , i 6= j
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Remark. Recall that hii is a measure of the remoteness (leverage) of the
ith point relative to the full data in x space: In the setting of only predictor
(k = 1), it has been shown that

hii = 1
n

+ (xi − x̄)2

Sxx

Clearly, hii is smallest at the center and increases as we move away from
the center.

This implies that the variance of ei depends on where xi lies. Generally,
points near the center of the x space have larger variance (poorer least-
squares fit) than residuals at more remote locations.
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R demonstration
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(Internally) Studentized residuals, or standardized residuals

Def 0.1. The standardized residuals, also called (internally) Studentized
residuals, are defined as

ri = ei√
MSRes(1− hii)

, i = 1, . . . , n

Remark. The standardized residuals have zero mean and constant variance
regardless of the location of xi when the form of the model is correct.

For large data sets, hii ≈ 0, so di and ri have little difference in those
cases.
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Externally Studentized residuals (or R-Student)
Def 0.2. The externally Studentized residuals are defined as

ti = ei√
S2

(i)(1− hii)
, i = 1, . . . , n

where S2
(i) is an estimate of σ2 obtained by fitting a linear regression model

to all data but the ith observation (note that the ei are still computed
from the model on the full data set).
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Model Adequacy Checking

Remark. The externally Studentized residuals ti do not differ much from
the internally Studentized residuals ri, except for influential points.
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Left: a leverage point (not influential); Middle: a leverage and influence point;
Right: a point with little leverage or influence

Comparing with the di, the ri is more sensitive to leverage points while
the ti is more sensitive to influential points.
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Remark. It can be shown that for all i,

S2
(i) = (n− p)MSRes − e2

i /(1− hii)
n− 1− p

This indicates that the S2
(i) can be computed from the model on the full

data set.

Thus, in practice, only one model based on the full data needs to be fit in
order to compute all ti simultaneously.
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Deleted residuals
Def 0.3. The deleted residuals, also called PRESS residuals are defined as

e(i) = yi − ŷ(i), i = 1, . . . , n

where ŷ(i) is the prediction of yi based on the model fit over all observations
except the ith one.
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Model Adequacy Checking

Remark. It can be shown that

e(i) = ei
1− hii

, i = 1, . . . , n

Thus, residuals associated with points for which both ei and hii are large
will have large PRESS residuals.
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Model Adequacy Checking

Remark. It turns out that the standardized PRESS residuals are identical
to the Studentized residuals.

First,

Var(e(i)) = 1
(1− hii)2 Var(ei) = 1

(1− hii)2 σ
2(1− hii) = σ2

1− hii
.

It follows that

e(i)√
Var(e(i))

= ei/(1− hii)√
σ2/(1− hii)

= ei√
σ2(1− hii)
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Assessing predictive power of a model
Another way to use the PRESS residuals is to define the PRESS statistic
for measuring how well a regression model will perform in predicting new
data:

PRESS =
∑

(yi − ŷ(i)︸ ︷︷ ︸
e(i)

)2 =
∑(

ei
1− hii

)2

Clearly, small values of the PRESS statistic are desired, and it should be
looked at relative to SST :

R2
prediction = 1− PRESS

SST

Remark. PRESS > SSRes and thus R2
prediction < R2.
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Using PRESS to Compare Models:

One very important use of the PRESS statistic is in comparing regression
models of different sizes (in terms of predictive power).

Generally, a model with a small value of PRESS is preferable to one where
PRESS is large.

Which other criterion can be used to compare different models of different
sizes?

We will discuss the topic of model selection and comparison in detail in
Chapter 10.
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R commands for computing scaled residuals

• Raw residuals: residuals(mymodel) or mymodel$residuals

• Normalized residuals: residuals(mymodel)/summary(mymodel)$sigma

• Standardized residuals, also called (internally) Studentized residuals:
rstandard(mymodel)

• Externally Studentized residuals (or R-Student): rstudent(mymodel)

• PRESS/deleted residuals: mymodel$residuals/(1-hatvalues(mymodel))
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What’s next

Residuals and their various scaled versions are useful in identifying outliers
and diagnosing for leverage and influence. We will cover this topic in
depth in Chapter 5.

In this lecture we focus on using residuals to check the model assumptions.
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Residual plots
Graphical analysis is much more effective in trying to detect patterns in
the residuals than looking at the raw numbers. There are different types
of plots that can be employed to check the different model assumptions.

• Normal quantile plots (qq-plots) ←− checking normality

• Residuals against fitted values ←− checking constant variance, or
nonlinearity

• Residuals against a regressor ←− checking constant variance, or
nonlinearity

• Residuals against time (if time known) ←− checking autocorrelation
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Normal Quantile Plots (qq-plots)

Assumption: ε1, . . . , εn ∼ N(0, σ2) −→ e1, . . . , en −→ t1, . . . , tn

What: A graphical method for comparing a sample ({ti}) with a target
distribution (standard normal) to see if there is any obvious violation of
the assumption that the sample is from the distribution.

How: Plot sample quantiles (sorted sample values t(i)) against theoret-
ical quantiles (zi = Φ−1( i−0.5

n )), which are expected samples from the
distribution (standard normal).

Desired pattern: If the sample truly comes from the distribution, then
the points in the qq-plot should closely follow the line y = x.
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Model Adequacy Checking

Graphical demonstration:
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Remark. Note that the textbook
uses normal probability plots:

• The externally Studentized
quantiles (t(i)) are shown on
the horizontal axis

• The probabilities are shown on
the vertical axis

• The vertical axis does not
have linear scale!

Overall, the two plots are equivalent
(we are looking for linear patterns in
both of them).

(Figure 4.4, page 140 of textbook)
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Residuals against fitted values

This plot may be used to check the
constant-variance assumption of the
model error (and also nonlinearity):

(a) Confetti in a box X

(b) Funnel

(c) Double bow

(d) Curvature (indication of a non-
linear relationship between the
response and the predictors)
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Residuals against values of a regressor

Consider the following two cases:

• If the regressor is already in the model (xj): Such plots are
equivalent to the plot of residuals against fitted values, useful for
checking the constant-variance assumption (and if there is a nonlinear
relationship between the response and the regressor)

• If the regressor is a new one: Such a plot is useful for determining
whether the new regressor should be added to the model (based on
the strength of the association) and if yes, in which way (based on
the form of the association).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 28/40
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Experiments
(See in-class R demonstrations: simulation + bodydata example)

Remark. Interpreting the residual plots is not an easy task:

• A lot of randomness for small data sets (must set the bar high)

• Easier for moderate or large data sets

• Important to learn from simulations!

It is an art and requires experience.
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Residuals against time

The time sequence plot of residuals may indicate that the errors at one
time period are correlated with those at other time periods. The correlation
between model errors at different time periods is called autocorrelation.
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Lack of fit test
The formal statistical test for the lack of fit of a linear regression model
assumes that the following three requirements

• normality, independence, and constant-variance

are all met and that only the linear relationship is in doubt.

It is formulated as follows:

H0 : There is no lack of fit (i.e., a linear model is valid)

H1 : There is a lack of fit (i.e., a linear model is insufficient)
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Assumption: We have replicate ob-
servations on the response y for at
least one value of the predictor x.

Suppose that x has m distinct values
(called levels) and there are ni obser-
vations at each level xi, 1 ≤ i ≤ m:

{(xi, yij) | j = 1, . . . , ni}

such that n =
∑
ni.

We fit a regression line to all n points
{(xi, yij) | 1 ≤ j ≤ ni, 1 ≤ i ≤ m}.
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The fitted value at xi is

ŷi = β̂0 + β̂1xi, i = 1, . . . ,m
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To conduct the lack-of-fit test, we need to compute

SSRes =
m∑
i=1

ni∑
j=1

(yij − ŷi)2

SSPE =
m∑
i=1

ni∑
j=1

(yij − ȳi)2 where ȳi = 1
ni

ni∑
j=1

yij

SSLOF =
m∑
i=1

ni∑
j=1

(ȳi − ŷi)2 =
m∑
i=1

ni(ȳi − ŷi)2

It can be shown that

SSRes = SSPE + SSLOF ,

with degrees of freedom n− 2 = (n−m) + (m− 2).
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The test statistic for lack of fit is

F0 = SSLOF /(m− 2)
SSPE/(n−m) = MSLOF

MSPE

H0 true∼ Fm−2,n−m

and large values of F0 are evidence against H0.

Therefore, to test for lack of fit, we would compute the test statistic F0
and conclude that the regression function is not linear if

F0 > Fα,m−2,n−m (or p-value < α).
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Example: weight∼height

This dataset has n = 507 observations and the predictor has m = 47
levels (after rounding off the values of height to nearest integers):
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R code for conducting the lack of fit test:

mydata$height←round(mydata$height)

mymodel←lm(weight∼height, data=mydata)

mylofmodel←lm(weight∼as.factor(height), data=mydata)

anova(mymodel,mylofmodel)
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Output

Model 1: weight ∼ height
Model 2: weight ∼ as.factor(height)

Res Df RSS Df Sum of Sq F Pr(> F )
1 505 43725
2 460 38956 45 4768.8 1.2514 0.1345
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How to read the R output:

• SSRes = 43725 with df = n− 2 = 505

• SSPE = 38956 with df = n−m = 460

• SSLOF = SSRes − SSPE = 43725− 38956 = 4768.8
with df = m− 2 = 45

• F0 = SSLOF /(m−2)
SSP E/(n−m) = 4768.8/45

38956/460 = 1.2514

• pval = P (F45,460 > 1.2514) = 0.1345, meaning that we fail to
reject H0 at level 5% (or less). Thus, it is reasonable to assume a
linear model for this data set.
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Summary
We talked about the following methods to check each assumption:

• The response and the regressors have a linear relationship. ←− lack
of fit test

• The error term ε has zero mean. ←− no need to check

• The error term ε has a constant variance σ2. ←− residual plots

• The errors are uncorrelated. ←− time plot (only reveals timewise
dependence)

• The errors are normally distributed. ←− normal quantile plot
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Further learning

Section 4.2.4: Partial Regression Plots
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