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This lecture is based on the following part of the textbook:

• Sections 5.1 – 5.5

Outline of the presentation:

• Variance-stabilizing transformations (to deal with non-constant
variance)

• Transformations to linearize the model (to deal with nonlinearity)

• Generalized linear regression and weighting (to deal with any
kind of variance)



Transformations and weighting

Introduction
In the last few lectures we introduced various graphical plots and a quan-
tative test to check for different kinds of model inadequacy:

• Residual plots: outliers, constant variance, nonlinearity

• Normal quantile plots (qq-plots): normality, outliers

• Lack of fit test (when having replicated observations): linearity

In this part we introduce some corrective procedures for unsatisfied model
assumptions.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 3/37



Transformations and weighting

Variance-stabilizing transformations

When the constant variance assump-
tion is violated as indicated in plots
(b)-(d), we can transform the re-
sponse variable in order to stabilize
the variance.

Theorem 0.1. If Var(y) = h(E(y))
for some function h, then a variance-
stabilizing transformation is

y′ ∝
∫ 1√

h(y)
dy
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Transformations and weighting

For example, for the funnel shape with linear function h(µ) = µ, i.e.,

Var(y) = h(E(y)) = E(y)

a variance-stabilizing transformation is

y′ ∝
∫ 1
√
y

dy = 2√y
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Transformations and weighting

Another example is the double bow shape with h(µ) = µ(1− µ), i.e.,

Var(y) = h(E(y)) = E(y)(1− E(y))

a variance-stabilizing transformation is

y′ ∝
∫ 1√

y(1− y)
dy =

∫ 1√
1− y2 d(√y) = 2 arcsin(√y)
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Transformations and weighting

Table 1: Common transformations and when to use them
When to use Which transformation
Var(y) ∝ 1 y′ = y (do nothing)
Var(y) ∝ E(y) y′ = √y (square root)
Var(y) ∝ E(y)(1− E(y)) y′ = arcsin(√y) (arcsine)
Var(y) ∝ E(y)2 y′ = log(y) (log)
Var(y) ∝ E(y)3 y′ = 1/√y (reciprocal sqrt)
Var(y) ∝ E(y)4 y′ = 1/y (reciprocal)
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Transformations and weighting

Remark.

• The variance-stabilizing transformations are empirical methods, and
they only transform the response to have approximately constant
variance.

• Transforming the response to stabilize the residual variance is a trial-
and-error procedure: You apply some of the common transformations
to the response, refit the model with the transformed response and
re-check the residual plots for each model.

• Weigh complicatedness of the transformation against “prettiness”
of the residual plots: The simplest transformation that leads to
acceptable residual plots should be preferred.
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Transformations and weighting

Simulation
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Transformations and weighting

Example: The Electric Utility Data

An electric utility company is interested in developing a model that relates
peak-hour demand (y in KW) to total energy usage (x, in KWh) during
the month. This relationship is important for the company, because they
have to plan their generation system for the peak usage, while customers
are charged for the total energy they use.

The data set ElectricUtility.txt contains observations on 53 residential
customers for the month of August.
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Transformations and weighting
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The residual plot shows a clear funnel-shaped pattern that suggests that
the residual variance increases with the response.
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Transformations and weighting

We apply three different transformations on the respose and investigate
their effects on the residuals:

• Linear growth (h(µ) = µ): square root

• Quadratic growth (h(µ) = µ2): log

• Cubic growth (h(µ) = µ3): reciprocal square root
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Transformations and weighting
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Which plot seems to (approximately) have a constant variance?
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Transformations and weighting

Conclusion: The square root transformation seems to work the best.

With such a transformation, the model becomes
√
y = β0 + β1x+ ε

All the subsequent analysis will be about the transformed response √y,
the original predictor x, and the corresponding error ε.
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Transformations and weighting

Transformations to linearize the model

Nonlinearity can occur not only in the response but also in one or more
predictors in a multiple regression model.

In many cases, the model can be improved by replacing the predictor that
is causing the problem with a non-linear function of the same variable,
e.g., replace xi by

√
xi.

Such nonlinear models are called intrinsically linear.
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Transformations and weighting

For example, if the scatter plot of y against x suggests an exponential
relationship, then an appropriate model would be

y = β0e
β1xε.

This model is intrinsically linear, because it is equivalent to

log y︸ ︷︷ ︸
y′

= log β0︸ ︷︷ ︸
β′0

+β1x+ log ε︸︷︷︸
ε′
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Transformations and weighting

Common intrinsically linear models and required transformations

True relationship Transformation Linearized model
y = β0x

β1 y′ = log y, x′ = log x y′ = log β0 + β1x
′

y = β0e
β1x y′ = log y y′ = log β0 + β1x

y = β0 + β1 log x x′ = log x y = log β0 + β1x
′

y = x
β0x−β1

y′ = 1
y , x
′ = 1

x y′ = β0 − β1x
′

Remark. The scatterplot of y against x, or residual plot against x, can be
used to infer true relationships.
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Transformations and weighting

Determining which transformation is needed is also a trial-and-error process:

• Start with the most probable transformations based on the scatterplot
or residual plots;

• Fit and compare the correspondinng models;

• You would want a high R2, a low MSRes, and a large F -statistic
(for significance of regression);

• Take also the context of the model into consideration.
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Transformations and weighting

Example: The Windmill Data

An engineer is using a windmill to generate electricity. She has collected
data on the DC output of the windmill and the corresponding wind velocity
(in mph). The data are available in Windmill.txt on the course website.

A scatter plot of the data shows that the relationship between predictor and
response is clearly not linear. The curve pattern is even more pronounced
in the corresponding residual plot.
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Transformations and weighting
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Transformations and weighting

The following table displays the outcomes of the original model and three
different transformations:

Model R2 MSRes F statistic
y = β0 + β1x 0.8745 0.23612 160.3
y = β0 + β1

√
x 0.9219 0.18622 271.5

y = β0 + β1 log x 0.9574 0.13762 516.6
y = β0 + β1

1
x 0.98 0.094172 1128.0

Conclusion: The reciprocal transformation is the best in all means.
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Transformations and weighting
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Transformations and weighting

The Box-Cox method
In some problems, it is not obvious what the “best” transformation for a
given data set would be.

George Box and David Cox (1964) came up with a method that would
automatically select an optimal transformation of the response y.

The method makes use of a family of possible power transformations:

y
(λ)
i =


yλi −1
λ ỹλ−1 , λ 6= 0
ỹ log yi, λ = 0

where ỹ = (y1y2 · · · yn)1/n is the geometric mean.
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Transformations and weighting

The optimal transformation parameter λ and the parameters of the least
squares regression model

y(λ) = Xβ + ε

are computed simultaneously through maximum likelihood estimation.

This method works only if the response y takes on only positive values,
which is usually not a problem.

If the response takes on some negative values, add an appropriately large
constant to all observations as a “pre-transformation”.
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Transformations and weighting

How to select λ

The optimal value of λ is deter-
mined by minimizing SSRes(λ), over
a range of values of λ, of the cor-
respondingly transformed data, or
equivalently maximizing the likeli-
hood function

L(λ) = −n2 logSSRes(λ)

A simple λ is usually preferred.

λ y′ = y(λ)

...
...

−2 y′ ∝ 1/y2

−1 y′ ∝ 1/y
−1

2 y′ ∝ 1/√y
0 y′ ∝ log y
1
2 y′ ∝ √y
1 y′ ∝ y
2 y′ ∝ y2

...
...
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Transformations and weighting

Electric utility example revisited

Optimal λ is 1
2 (consistent with slide 10)
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Transformations and weighting

Weighting
When the errors are uncorrelated but have unequal variances, i.e.,

Var(e) is a diagonal matrix, but Var(e) 6= σ2I (for any σ2)

weighting is another effective way of handling the non-constant variance
(besides the variance-stabilizing transformation).

For example, consider the following model

y = β0 + β1x+ ε, ε ∼ N(0, xσ2)

where the predictor takes only positive values.
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Transformations and weighting

Assume a sample of n data points (xi, yi) from it:

yi = β0 + β1xi + εi, εi ∼ N(0, xi σ2)

Then
Var(y) = Var(e) = σ2 diag(x1, x2, . . . , xn).

To stabilize the variance, let

ε′i = εi/
√
xi ∼ N(0, σ2), i = 1, . . . , n

which are also uncorrelated.
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Transformations and weighting

Then the original model can be rewritten as

yi√
xi

= β0
1√
xi

+ β1
√
xi + ε′i, i = 1, . . . , n

The total least squares criterion is

n∑
i=1

(
yi√
xi
− β0

1
√
xi
− β1
√
xi

)2

=
n∑
i=1

1
xi

(yi − β0 − β1xi)2

Correspondingly we have obtained a weighted least squares problem:

min
β̂0,β̂1

n∑
i=1

wi (yi − β̂0 − β̂1xi)2

where wi = 1
xi

are the weights of different observations.
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Transformations and weighting

Similarly, for the model

y = β0 + β1x+ ε, ε ∼ N(0, x2σ2)

a sample of n data points (xi, yi) from it,

yi = β0 + β1xi + εi, εi ∼ N(0, x2
i σ

2)

the correspondingly weighted least squares problem is

min
β̂0,β̂1

n∑
i=1

wi (yi − β̂0 − β̂1xi)2, wi = 1
x2
i
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Transformations and weighting

Weighted least squares with 1 predictor

Let

x̄(w) =
∑
wixi∑
wi

, ȳ(w) =
∑
wiyi∑
wi

and

S(w)
xx =

n∑
i=1

wi(xi − x̄(w))2,

S(w)
xy =

n∑
i=1

wi(xi − x̄(w))(yi − ȳ(w))

Then we can prove the following result.
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Transformations and weighting

Theorem 0.2. The solution of the weighted least squares problem (with
only one predictor)

min
β̂0,β̂1

n∑
i=1

wi (yi − β̂0 − β̂1xi)2

is given by

β̂1 = S
(w)
xy

S
(w)
xx

,

β̂0 = ȳ(w) − β̂1x̄
(w)
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Transformations and weighting

Simulation (cont’d)
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Transformations and weighting

Weighted least squares with k predictors

Assume a data set of n data points with k predictors: X ∈ Rn×p,y ∈ Rn.

Let W = diag(w1, . . . , wn) be the weights that we use for fitting a multiple
linear regression model.

Equivalently, we are assuming the following sample regression model

y = Xβ + ε, where E(ε) = 0, ε ∼ σ2W−1

Define W1/2 = diag(w1/2
1 , . . . , w

1/2
n ). Note that

W1/2 ·W1/2 = W.
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Transformations and weighting

The weighted least squares fitting problem is

min
β̂
‖W1/2(y−Xβ̂)‖2

and the least squares estimator is

β̂ = (X′WX)−1X′Wy

Proof :
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Transformations and weighting

Remark. If W = I, then the weighted least squares problem reduces to
the ordinary least squares problem:

y = Xβ + ε, where E(ε) = 0, ε ∼ σ2I.

Along the opposite direction, we can relax the diagonal covariance matrix
to be any symmetric, positive definite matrix, leading to the so-called
generalized least squares problem:

y = Xβ + ε, where E(ε) = 0, ε ∼ σ2V

The least squares estimator is

β̂ = (X′V−1X)−1X′V−1y

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 36/37



Transformations and weighting

Summary
• Variance-stabilizing transformations (on the response)

– Diagnostic plots: residuals against fitted values

• Linearizing transformations (on response and/or predictor)

– Diagnostic plots: response/residual against predictor

– Want a high R2, a low MSRes, and a large F -statistic

• The Box-Cox method (to select the best power transformation for the
response)

• Weighted least squares
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