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This lecture is based on the following part of the textbook:

• Sections 7.1 – 7.4

Outline of the presentation:

• Polynomial regression

– Important considerations

– Model fitting

• Nonparametric methods

– Kernel regression

– Loess regression



Polynomial Regression

Introduction
Previously we talked about transformations on the response and/or the
predictor(s) for linearizing a nonlinear relationship.

When this fails, we can turn to polynomial regression models such as

y = β0 + β1x+ · · ·+ βkx
k + ε

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε

to represent the nonlinear patterns:

• The top model is called a kth-order polynomial model in one variable;

• The bottom model is called a quadratic model in two variables.
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Polynomial Regression

Polynomial models are very powerful to handle nonlinearity, because poly-
nomials can approximate continuous functions within any given precision.

However, such fitting problems can still be treated as linear regression:

y = β0 + β1 x︸︷︷︸
x1

+ · · ·+ βk x
k︸︷︷︸
xk

+ε

y = β0 + β1x1 + β2x2 + β11x
2
1︸ ︷︷ ︸

β3x3

+β22x
2
2︸ ︷︷ ︸

β4x4

+β12x1x2︸ ︷︷ ︸
β5x5

+ε

Thus, we can readily utilize the corresponding theory, tools and techniques
for linear regression to carry out polynomial regression.
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Polynomial Regression

Important considerations

However, there will be important considerations in polynomial regression:

• Order of the polynomial model

• Model-building strategy

• Extrapolation

• Ill-conditioning

• Hierarchy
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Polynomial Regression

Order of the polynomial model

First, remember that it is always possible to fit a polynomial model of
order n − 1 perfectly to a data set n points (however, this will almost
surely be overfitting!!!)

Transformations should be tried first to keep the model first order.

A low-order model in a transformed variable is almost always preferable to
a high-order model in the original metric.

One should always maintain a sense of parsimony, that is, use the
simplest possible model that is consistent with the data and knowledge
of the problem environment.
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Polynomial Regression

Model-building strategy

There are two standard procedures for building a polynomial model:

• Forward selection: Successively fit models of increasing order until
the t test for the highest order term is nonsignificant.

• Backward elimination: Appropriately fit the highest order model
and then delete terms one at a time, starting with the highest order,
until the highest order remaining term has a significant t statistic.

Interestingly, these two procedures do not necessarily lead to the same
model.
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Polynomial Regression

Extrapolation

Because polynomial models may turn in unanticipated and inappropriate
directions, extrapolation with them can be extremely hazardous.

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 8/32



Polynomial Regression

Ill-conditioning

In the setting of polynomial regression, the design matrix may have lots of
columns corresponding to just one predictor or two.

Those columns will have a significant multicolinearity, especially when the
values of x are limited to a narrow range.

As the order of the polynomial model increases, X′X become more and
more ill-conditioned, meaning that matrix inversion calculations are more
and more inaccurate.

Centering the data (i.e., letting x̃i = xi−x̄) may remove some nonessential
ill-conditioning.
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Polynomial Regression

Hierarchy

The regression model

y = β0 + β1x+ β2x
2 + β3x

3 + ε

is said to be hierarchical since it contains all terms of order 3 and lower.

In contrast, the models

y = β0 + β1x+ β3x
3 + ε, y = β0 + β1x1 + β12x1x2 + ε

are not hierarchical.
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Polynomial Regression

Polynomial regression

We present the model in the following two cases:

• Polynomial regression in one variable (Hardwood example)

y = β0 + β1x+ · · ·+ βkx
k + ε

• Polynomial regression in two variables (Chemical Process example)

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε
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Polynomial Regression

Example 1: The Hardwood Data

We have 19 observations concern-
ing the strength of kraft paper (y)
and the percentage of hardwood
(x) in the batch of pulp from which
the paper was produced.

Three polynomial models along with
the linear model were fitted to the
data.
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Polynomial Regression
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Polynomial Regression

The summary statistics of the four models are reported below:

Order of poly. model R2 R2
adj σ̂2 p-value*

1 (linear model) 0.3054 0.2645 11.822 0.01414
2 (quadratic model 0.9085 0.8971 4.422 1.89e-08
3 (cubic model) 0.9707 0.9648 2.5852 4.72e-05
4 0.9736 0.9661 2.5392 0.233

*of the t test for the highest-order term in each model.

Which model should we select?
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Polynomial Regression

The cubic model is the best!
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Polynomial Regression

Example 2: Chemical Process data

The following table presents data from an experiment that was performed
to study the effect of two variables, reaction temperature (T ) and
reactant concentration (C), on the percent conversion of a chemical
process (y).

Panel A of the table shows the levels used for T and C in the natural units
of measurements, and panel B shows the levels in terms of coded variables
x1 and x2:

x1 = T − 225
25 , x2 = C − 20

5
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Polynomial Regression
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Polynomial Regression

The process engineers adopted a central composite design in order to
fit a second-order model:
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Polynomial Regression

We fit a full quadratic model in the coded variables x1, x2:

y = β0 + β1x1 + β2x2 + β11x
2
1 + β22x

2
2 + β12x1x2 + ε

The design matrix and the response vector for this model are
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Polynomial Regression

By direct calculation, we have

β̂ = (X′X)−1X′y = (79.75, 9.83, 4.22,−8.88,−5.13,−7.75)′

Therefore, the fitted model (in the coded variables) is

ŷ = 79.75 + 9.83x1 + 4.22x2 − 8.88x2
1 − 5.13x2

2 − 7.75x1x2

In terms of the original variables, the model is

ŷ = −1105.56 + 8.024T + 22.994C − 0.0142T 2 − 0.205C2 − 0.062TC
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Polynomial Regression

Such a response surface methodology (RSM) is widely applied in
industry for optimizing the response.
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Polynomial Regression

Nonparametric regression models

So far we have discussed linear and polynomial regression models which all
specify a functional relationship betwee the predictors and the response:

y = f( x︸︷︷︸
predictors

, β︸︷︷︸
parameters

) + ε

They are examples of parametrized regression where we

• first choose a class of the function f (linear, quadratic, etc.) and

• then use the data to estimate the parameters β.
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Polynomial Regression

Nonparametric regression methods do not need to specify the form of
the function f (thus there is no parameter)

y = f( x︸︷︷︸
predictors

) + ε

but use the data to directly make predictions in some way (In some sense,
the goal is to estimate the function f itself).

We mention two nonparametric regression methods:

• Kernel regression

• Locally weighted regression (Loess)
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Polynomial Regression

Kernel regression

Recall that in ordinary linear regression (with the least squares criterion),
the fitted values are collectively given by

ŷ = Hy.

Individually, we have for each point i,

ŷi =
∑
j

hijyj .

This shows that each fitted value ŷi is a linear combination of the obser-
vations yi but with different weights.
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Polynomial Regression

Kernel regression maintains the form of estimation but extends the weights
using a kernel function K(·) to predict y at any specific location x0:

ỹ =
∑
j

wjyj , where wj = K(xj − x0)∑
kK(xk − x0) for each j.

Note that
∑
wj = 1. This operation is called kernel smoothing.
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Polynomial Regression

Typically, the kernel functions have the following properties:

• K(t) ≥ 0 for all t

•
∫∞
−∞K(t) dt = 1

• K(−t) = K(t) for all t

Note that these are properties of symmetric probability density functions.

Additionally, K is often required to peak at zero and become (nearly)
zero outside a neighborhood of 0, so that only points in the neighbor-
hood are used for prediction at x0.
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Polynomial Regression

Common kernel functions

• Gaussian kernel function

K(t; b) = 1√
2π(b/3)2

e
− t2

2(b/3)2

• Triangular kernel function

K(t; b) =
{

1
b (1− |t|b ), |t| < b

0, |t| > b

• Uniform kernel function

K(t; b) =
{

1
2b , |t| < b

0, |t| > b

The radius b of the neighborhood is
called the bandwidth of the kernel.
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Polynomial Regression

Locally weighted regression (Loess)

Like kernel regression, loess also uses the data from a neighborhood around
the specific location x0, defined by the span (fraction of the total points).

Dr. Guangliang Chen | Mathematics & Statistics, San José State University 28/32



Polynomial Regression

The loess procedure uses the points in the neighborhood to generate a
weighted least-squares estimate of the specific response y at x0 (usually
through simple linear regression or a quadratic regression model).

Most software packages use the tri-
cube weighting function

W (t) =

(1− t3)3, 0 ≤ t ≤ 1
0, t > 1

to assign weights for each point xj
in the neighborhood of x0

wj = W

( |xj − x0|
∆(x0)

)
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Polynomial Regression

Summary

We have talked about the following regression methods:

• Polynomial regression

• Nonparametric methods*

– Kernel regression

– Loess regression

*These methods are flexible but computationally very intensive.
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Polynomial Regression

Further learning

7.2.2 Piecewise Polynomial Fitting (Splines)

7.5 Orthogonal Polynomials
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