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Outline

• Last time: FDA (dimensionality reduction)

• Today: QDA/LDA (classification)

• Naive Bayes classifiers

• Matlab/Python commands



Discriminant Analysis for Classification

Probabilistic models
We introduce a mixture model to the training data:

• We model the distribution of each training class Ci by a pdf fi(x).

• We assume that for a fraction πi of the time, x is sampled from Ci.

The Law of Total Probability implies that the mixture distribution has a pdf

f(x) =
∑

f(x | x ∈ Ci)P (x ∈ Ci) =
∑

fi(x)πi

that generates both training and test data (two independent samples from f(x)).

We call πi = P (x ∈ Ci) the prior probabilities, i.e., probabilities that x ∈ Ci

prior to we see the sample.
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Discriminant Analysis for Classification

How to classify a new sample
A naive way would be to assign a sample to the class with largest prior probability

i∗ = argmaxi πi

We don’t know the true values of πi, so we’ll estimate them using the observed
training classes (in fact, only their sizes):

π̂i = ni

n
, ∀ i

This method makes constant prediction, with error rate 1 − ni∗
n .

Is there a better way?
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Discriminant Analysis for Classification

Maximum A Posterior (MAP) classification
A (much) better way is to assign the label based on the posterior probabilities
(i.e., probabilities after we see the sample):

i∗ = argmaxi P (x ∈ Ci | x)

Bayes’ Rule tells us that the posterior probabilities are given by

P (x ∈ Ci | x) = f(x | x ∈ Ci)P (x ∈ Ci)
f(x)

∝ fi(x)πi

Therefore, the MAP classification rule can be stated as

i∗ = argmaxi fi(x)πi

This is also called Bayes classifier.
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Discriminant Analysis for Classification

Estimating class-conditional probabilities fi(x)
To estimate fi(x), we need to pick a model i.e., a distribution from certain family
to represent each class.

Different choices of the distribution lead to different classifiers:

• LDA/QDA: by using multivariate Gaussian distributions

fi(x) = 1
(2π)d/2|Σi|1/2 e− 1

2 (x−µi)T Σ−1
i

(x−µi), ∀ Class i

• Naive Bayes: by assuming independent features in x = (x1, . . . , xd)

fi(x) =
d∏

j=1
fij(xj)
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Discriminant Analysis for Classification

MAP classification with multivariate Gaussians
In this case, we estimate the distribution means µi and covariances Σi using their
sample counterparts (based on training data):

µ̂i = 1
ni

∑
x∈Ci

x, and Σ̂i = 1
ni − 1

∑
x∈Ci

(x − µ̂i)(x − µ̂i)T

This leads to the following classifier:

i∗ = argmaxi

ni

n(2π)d/2|Σ̂i|1/2
e− 1

2 (x−µ̂i)T Σ̂−1
i

(x−µ̂i)

= argmaxi log ni − 1
2

log |Σ̂i| − 1
2

(x − µ̂i)T Σ̂−1
i (x − µ̂i)
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Discriminant Analysis for Classification

Decision boundary
The decision boundary of a classifier consists of points that have a tie.

For the MAP classification rule based on mixture of Gaussians modeling, the
decision boundaries are given by

log ni − 1
2

log |Σ̂i| − 1
2

(x − µ̂i)T Σ̂−1
i (x − µ̂i)

= log nj − 1
2

log |Σ̂j | − 1
2

(x − µ̂j)T Σ̂−1
j (x − µ̂j)

This shows that the MAP classifier has quadratic boundaries.

We call the above classifier Quadratic Discriminant Analysis (QDA).
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Discriminant Analysis for Classification

Equal covariance: A special case
QDA assumes that each class distribution is multivariate Gaussian (but with its
own center µi and covariance Σi).

We examine the special case when Σ1 = · · · = Σc = Σ so that the different
classes are shifted versions of each other.

In this case, the MAP classification rule becomes

i∗ = argmaxi log ni − 1
2

(x − µ̂i)T Σ̂−1(x − µ̂i)

where Σ̂ represents the pooled estimate of Σ using all classes

Σ̂ = 1
n − c

c∑
i=1

∑
x∈Ci

(x − µ̂i)(x − µ̂i)T
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Discriminant Analysis for Classification

Decision boundary in the special case
The decision boundary of the equal-covariance classifier is:

log ni − 1
2

(x − µ̂i)T Σ̂−1(x − µ̂i) = log nj − 1
2

(x − µ̂j)T Σ̂−1(x − µ̂j)

which simplifies to

xT Σ̂−1(µ̂i − µ̂j) = log ni

nj
− 1

2

(
µ̂T

i Σ̂−1µ̂i − µ̂T
j Σ̂−1µ̂j

)
This is a hyperplane with normal vector Σ̂−1(µ̂i − µ̂j), showing that the classifier
has linear boundaries.

We call it Linear Discriminant Analysis (LDA).
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Discriminant Analysis for Classification

Relationship between LDA and FDA
The LDA boundaries are hyperplanes with normal vectors Σ̂−1(µ̂i − µ̂j).

In 2-class FDA, the projection direction is

v = S−1
w (µ̂1 − µ̂2)

where

Sw = S1 + S2 =
2∑

i=1

∑
x∈Ci

(x − µ̂i)(x − µ̂i)T = (n − 2)Σ̂.

Therefore, LDA is essentially a union of 2-class FDAs (with cutoffs selected based
on Bayes rule). However, they are derived from totally different perspectives
(optimization versus probabilistic).
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Discriminant Analysis for Classification

Naive Bayes
The naive Bayes classifier is also based on the MAP decision rule:

i∗ = argmaxi fi(x)πi

A simplifying assumption is made on the individual features of x:

fi(x) =
d∏

j=1
fij(xj) (x1, . . . , xd are independent)

Accordingly, the decision rule becomes

i∗ = argmaxi πi

d∏
j=1

fij(xj) = argmaxi log πi +
d∑

j=1
log fij(xj)
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Discriminant Analysis for Classification

How to estimate fij

The independence assumption reduces the high dimensional density estimation
problem (fi(x)) to a union of simple 1D problems ({fij(x)}j).

Again, we need to pick a model for the fij .

For continuous features (which is the case in this course) the standard choice is
the 1D normal distribution

fij(x) = 1√
2πσij

e−(x−µij)2/2σ2
ij

where µij , σij can be estimated similarly using the training data.
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Discriminant Analysis for Classification

MAP classification: A summary
• General decision rule

i∗ = argmaxi fi(x)πi

• Examples of Bayes classifiers

– QDA: multivariate Gaussians

– LDA: multivariate Gaussians with equal covariance

– Naive Bayes: independent features x1, . . . , xd

We will show some experiments with MATLAB (maybe also Python) next class.
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Discriminant Analysis for Classification

The Fisher Iris dataset
• Background (see Wikipedia)

– A typical test case for many statistical classification techniques in
machine learning

– Originally used by Fisher for developing his linear discriminant model

• Data information

– 150 observations, with 50 samples from each of three species of
Iris (setosa, virginica and versicolor)

– 4 features measured from each sample: the length and the width
of the sepals and petals, in centimeters
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Discriminant Analysis for Classification

MATLAB implementation of LDA/QDA
% fit a discriminant analysis classifier

mdl = fitcdiscr(trainData, trainLabels, ’DiscrimType’, type)

% where type is one of the following:

• ‘Linear’ (default): LDA

• ‘Quadratic’: QDA

% classify new data

pred = predict(mdl, testData)
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Discriminant Analysis for Classification

Python scripts for LDA/QDA

from sklearn.discriminant_analysis import LinearDiscriminantAnalysis

#from sklearn.discriminant_analysis import QuadraticDiscriminantAnaly-
sis

lda = LinearDiscriminantAnalysis()

pred = lda.fit(trainData,trainLabels).predict(testData)

print("Number of mislabeled points: %d" %(testLabels != pred).sum())
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Discriminant Analysis for Classification

The singularity issue in LDA/QDA
Both LDA and QDA require inverting covariance matrices, which may be singular
in the case of high dimensional data.

Common techniques to fix this:

• Apply PCA to reduce dimensionality first, or

• Regularize the covariance matrices, or

• Use psuedoinverse: ’pseudoLinear’, ’pseudoQuadratic’
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Discriminant Analysis for Classification

MATLAB functions for Naive Bayes

% fit a naive Bayes classifier

mdl = fitcnb(trainData, trainLabels, ’Distribution’, ‘normal’)

% classify new data

pred = predict(mdl, testData)
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Discriminant Analysis for Classification

Python scripts for Naive Bayes

from sklearn.naive_bayes import GaussianNB

gnb = GaussianNB()

pred = gnb.fit(trainData, trainLabels).predict(testData)

print("Number of mislabeled points: %d" %(testLabels != pred).sum())
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Discriminant Analysis for Classification

Improving Naive Bayes

• Independence assumption: apply PCA to get uncorrelated features
(closer to being independent)

• Choice of distribution: change normal to kernel smoothing to be more
flexible

mdl = fitcnb(trainData, trainLabels, ’Distribution’, ‘kernel’)

However, this will be at the expense of speed.
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Discriminant Analysis for Classification

HW3a (due in 2 weeks)
First use PCA to project the MNIST dataset into s dimensions and then do the
following.

1. For each values of s below perform LDA on the data set and compare the
errors you get:

• s = 154 (95% variance)

• s = 50

• s = your own choice (preferably better than the above two)

2. Repeat Question 1 with QDA instead of LDA (everything else being the
same).
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3. For each values of s below apply the Naive Bayes classifier (by fitting
pixelwise normal distributions) to the data set and compare the errors you
get:

• s = 784 (no projection)

• s = 154 (95% variance)

• s = 50

• s = your own choice (preferably better than the above three)
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Next time: Two-dimensional LDA
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Discriminant Analysis for Classification

Midterm project 2: MAP classification
Task: Concisely describe the classifiers we have learned in this part and summa-
rize their corresponding results in a poster to be displayed in the classroom.

In the meantime, you are encouraged to try the following ideas.

• The kernel smoothing option in Naive Bayes

• The cost option in LDA/QDA:
mdl=fitcdiscr(trainData,trainLabels,’Cost’,COST) where COST is a
square matrix, with COST(I,J) being the cost of classifying a point into
class J if its true class is I. Default: COST(I,J)=1 if I =J, and COST(I,J)=0
if I=J.

• What else?
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Discriminant Analysis for Classification

Who can participate: One to two students from this class, subject to instruc-
tor’s approval.

When to finish: In 2 to 3 weeks.

How it will be graded: Based on clarity, completeness, correctness, originality.
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