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With high dimensional data, LR commonly overfits the data. Two For 11 regularization, p 1s set to 1 and 12 will have a p value of 2. Figure 4 contains
methods can be used to resolve the problem: Figure 2: PCA 50 & One-Versus-All Method Applied to All Digits different values of the regularization parameter (2°C). Re ference
. Reduc.ing the dimensionality of the data using dimensionality Figure 2 shows the one versus all method for each digit. Digit 8 resulted in the largest 11 regularization has its lowest test error when C=1, and 12’s lowest test error occurs at [1] Guangliang Chen, “Logistic Regression”, Lecture 6 — Math 285.
reduction methods (such as PCA or 2DLDAA) test error of 0.0411 followed by digit 9 with an error of 0.0383. Digit 1 had the lowest C=0.5.
 Adding a regularization term to the objection function: test error when using one versus all binary logistic regression. . _ [2] Jeff Howbert, “Introduction to Machine Learning — Logistic Regression”,
: As the value of C increases above 1, the test errors for both 11 and 12 continously Lecture — Winter 2012
. ecture te :
increase.




