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Introduction

Classification with Support Vector Machines is a classy
solution to the problem of classitying classes, or distin-
guishing between groups based on data. The funda-
mental idea of SVM is to find a function that can achieve
the greatest separation between classes so that we can
plug in the data from an observation and make a predic-
tion of its class. SVM based classification is said to have
been developed by a gentleman named Viladimir Vap-
nik in the 1970’s has since become popular because of
Its beauty and predictive power. It has been applied with
great success to biological problems such as identify-
INg protein classes and recognizing hand written digits.

Training the SVM model
C = 10.000

By increasing the regularization of the model, (smaller C
means greater regularization), we increase the number of
support vectors and can recieve a better fit line. However,

Training the Polynomial SVM model
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Polynomial Degree

A polynomial curve for the data above is more suitable as a
ine of separation. However, finding an approprate degree
polynomial (p) is essential to prevent overfitting. Here we
see that a cubic polynomial or higher results in overfitting.

Training the Gaussian Kernel SVM model
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applications to MNIST

Many other classification techniques such as K Nearest
Neighbors andlogistic regression benefitfrom dimension-
ality reduction techniques such as principal component
analysis (PCA). Itis also possible that SVM classifiers can
also benefitfrom PCA. Sototestthis out we ran one-vs-one
SVM with m-fold cross validation and well as on the test
data with many differentlevels of dimensionality reduction.
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overregularization canresultin underfitting. A best value of
C can be chosen with cross validation on the training set.

svm: kernelization

Kernel SVM may be more appropriate when the data isn'’t
inearly seperable. Kernelization is a method in which we
represent data in a higher dimensional space where it may
then become linearly seperable. The two common types of
kernels used are polynomial kernels and Gaussian kernels.
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A kernel function, bR =R (Where [ > d)

'S used on the data vector , ; so we just need to re-
place  Ti  with ®(X; ) in the maximization problem.
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svm: method

Init’s simplestform, SVM attempts to find an optimal hyper-
plane boundarythatlinearly separatestwo classes of data.
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kNN method
sigma=0.86

As you can see, SVM did not see any bene-
fits from dimensionality reduction like we saw In
the other cases. What about run time?” There was
a significant reduction in runtime by using PCA.

SVM aims to find a line that maximize a “margin” length
between the separation line and the support vectors In
eachrespectiveclass. Thislineisrepresentedas O=wx+Db.
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Running SVM with all dimensions took around 10

times as long as running it with 50 dimensions.

Finding the best fit line with SVM

SimilarlywithaGauss-
lan kernel, selecting
an appropriate sig- 010
ma can be chosen

with cross validation 008 {
on the training set. In addition to cross validation, the KNN
method is a quick way to estimate a good value of sigma. 006 f

svm: multiple classes
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, , , . , | ? Extending the SVM method to multiple-class data sets can be - | | |
To find this optimal margin(ie. solve for w and b), first let: b i ( Ny b (. )(j[) | accomplished by the “one vs one” or “one vs rest” methods. 0 ; B s 20
y; = 1 when point 2 1s in class 1 0 — iV P(x;) (Xj) One vs One: | -
yi = —1 when pomnt ¢ is in class 2 / i Models are run comparing each class to every other class. we can select an appropriate L by cross validation.

Then solve the maximization problem: The highest vote count is chosen is the predicted class.

Calculations with this higher dimensional data can

SVM Error Rates on MINIST

The optimal w, b, and prediction y can be found to be: orove to be impractical. Therefore using the “kernel One vs Rest:
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Multiclass: One vs Rest
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where A; > 0, Z ANy, =0

W= \yx;
j

b= vy; — wx; (where j is a support vector)

svm: regularization

Multiclass: One vs Rest
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The equation to classity new data then becomes:

g; =sign(»  Nyik(z;, xj) +b)
i

One-vs-One M One-vs-Rest

Since the MNIST dataset is highly non-linear, we see
that using a kernel is preferred. In our tests, the Gauss-
lan kernel performed best under a one-vs-rest mul-
ticlass method achieving around a 1.5% error rate.
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sen as support vectors. Inthis case we should utilize some
regularization to take into account more support vectors,
thus hopetully getting a better fit on test data.To do this we
iIntroduceanewconstrainttothetothemaximationproblem.
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Polynomial Kernel:
Gaussian Kernel: k(m,,afj) _ (1 + ;- %.)P

k(zi,x;) = exp(—||z; — x,|[5/(207))




