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Hybrid Linear Modeling

Given : X = {x1,x2, . . . ,xN} ⊂ RD sampled from K Borel
probability measures supported around affine
subspaces of dimensions d1, . . . , dK
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Hybrid Linear Modeling

Given : X = {x1,x2, . . . ,xN} ⊂ RD sampled from K Borel
probability measures supported around affine
subspaces of dimensions d1, . . . , dK

Goals :
Determine K and d1, . . . , dK (if unknown)
Cluster data into subsets and model each subspace
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Some Applications

Motion Segmentation
Given trajectory vectors of pre-selected feature
points along the image frames in a video sequence,
cluster the trajectories according to the motions

Face Image Clustering
Classify frontal images of several human subjects
under different angles and illumination conditions

Temporal Video Segmentation
Partition a long video sequence into multiple short
segments containing different scenes
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Outline of the Talk

Hybrid linear modeling via SCC
The SCC algorithm
Theoretical analysis
Numerical techniques

Extension to multi-manifold modeling through
Kernelization
Localization

Application to motion segmentation
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Two Assumptions

K and dk are known
We want to focus on clustering and modeling

dk are all equal to d

Otherwise set d = maxdk and treat all subspaces as
being d dimensional
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d = 0: Point Clouds

Example
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d = 0: Point Clouds

Example
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Spectral Clustering (Ng-Jordan-Weiss, NIPS 01’)

Construct pairwise weights: Wij = e−∥xi−xj∥2/σ

Compute W’s top K e.v.’s: U = [u1 . . .uK] ∈ RN×K

and map data to the row vectors of U

Cluster data in the U space by Kmeans
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Construct pairwise weights: Wij = e−∥xi−xj∥2/σ

Compute W’s top K e.v.’s: U = [u1 . . .uK] ∈ RN×K

and map data to the row vectors of U

Cluster data in the U space by Kmeans
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When d ≥ 1

Consider the 2 lines clustering problem (d = 1):

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Spectral Curvature Clustering for Hybrid Linear Modeling – p. 7/34



When d ≥ 1

Clusters found by spectral clustering:
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When d ≥ 1

Clusters found by spectral clustering:
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Conclusions: cannot compute weights using only

distance

2 points
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Multi-way Clustering

Idea (for d-planes clustering, d ≥ 0):
Assign an affinity measure to any d + 2 points, using
e.g., volume, LS error
Process the resulting (d + 2)-way affinity tensor to
cluster data
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Multi-way Clustering

Idea (for d-planes clustering, d ≥ 0):
Assign an affinity measure to any d + 2 points, using
e.g., volume, LS error
Process the resulting (d + 2)-way affinity tensor to
cluster data

Important questions :
What are good multiwise affinities?
How to process affinity tensors both theoretically and
practically (Nd+2 affinities!)?
How to rigorously justify such an algorithm?
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Multi-way Clustering

Idea (for d-planes clustering, d ≥ 0):
Assign an affinity measure to any d + 2 points, using
e.g., volume, LS error
Process the resulting (d + 2)-way affinity tensor to
cluster data

Important questions :
What are good multiwise affinities?
How to process affinity tensors both theoretically and
practically (Nd+2 affinities!)?
How to rigorously justify such an algorithm?

Previous work :
Govindu (CVPR 05’), Agarwal et al. (CVPR 05’, ICML
06’), Shashua et al. (ECCV 06’)
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Polar Curvature

Definition : For any Z = {z1, . . . ,zd+2} ⊂ RD, and the
(d + 1)-simplex S, the polar curvature of Z is

c2
p(Z) ∶= diam(Z)2 ⋅ ∑ psin

zi
(Z)2,

where psin
zi

is the polar sine at zi, 1 ≤ i ≤ d + 2:

psin
zi
(Z) ∶= (d + 1)! ⋅Vd+1(S)∏j≠i ∥zj − zi∥

.

Two special cases :
d = 0: psin

zi
(Z) ≡ 1, cp(Z) = ∥z1 − z2∥

d = 1: psin
zi
(Z) = sinzi

(Z)
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Polar Curvature - cont’d

Main property (Lerman & Whitehouse, 2008):

∫ c2
p(Z) dµd+2(Z) ≈ d-dim (squared) LS error of µ

It generalizes the following identity (d = 0):

∫ ∥x − y∥2 dµ(x)dµ(y) = 2 ⋅ ∫ ∥x − x̄∥2 dµ(x)
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Polar Curvature - cont’d

Main property (Lerman & Whitehouse, 2008):

∫ c2
p(Z) dµd+2(Z) ≈ d-dim (squared) LS error of µ

It generalizes the following identity (d = 0):

∫ ∥x − y∥2 dµ(x)dµ(y) = 2 ⋅ ∫ ∥x − x̄∥2 dµ(x)

Other possible curvatures (with same property):
cLS: d-dim least squares error of Z

ch: minimum height from any vertex to its opposite
face in the (d + 1)-simplex Z
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The Polar Tensor

Affinity tensor Ap ∈ RN×⋯×N (of order d + 2):

Ap(i1, ..., id+2) = e−c
2

p (xi1
,...,xid+2

)/σ

For clean subspaces and σ → 0:
Ap ≈ 1 within an underlying cluster
Ap ≈ 0 between clusters
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From Affinities to Weights

(Govindu 05’) Construct pairwise weights from affinities:

Wik = ∑
∀j1,...,jd+1

Ap(i, j1, . . . , jd+1) ⋅Ap(k, j1, . . . , jd+1)

Within-cluster weights: large;
between-cluster weights: small
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Theoretical SCC (TSCC)

Compute affinity tensor Ap

Form weight matrix W from Ap

Apply spectral clustering
Extract top K eigenvectors of W: U = [u1 . . .uK]
Apply Kmeans to the row vectors of U
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Another Interpretation of TSCC

Define an affinity matrix by unfolding the tensor Ap:

A(i, ∶) = {Ap(i, j1, . . . , jd+1) ∣ ∀j1, . . . , jd+1} ∈ R
Nd+1

,

containing closeness information between point i and
all (d + 1)-tuples of points (spanning d-planes)

Apply SVD (reduce dimension) + Kmeans (cluster data)

(Note that W =A ⋅A′)
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Another Interpretation of TSCC

Define an affinity matrix by unfolding the tensor Ap:

A(i, ∶) = {Ap(i, j1, . . . , jd+1) ∣ ∀j1, . . . , jd+1} ∈ R
Nd+1

,

containing closeness information between point i and
all (d + 1)-tuples of points (spanning d-planes)

Apply SVD (reduce dimension) + Kmeans (cluster data)

(Note that W =A ⋅A′)
Important observation :
Enough to have some representative (d + 1)-tuples from
each cluster, thus possible to reduce Nd+1 to O(K)!
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Two-step Justification

Step 1: we assume an ideal tensor:

Ã(i1, . . . , id+2) = 1 within-cluster and 0 between-clusters,

and show that SCC works perfectly with Ã

(can be closely approximated for clean data + σ → 0)

Step 2: we examine more general tensors by using
operator perturbation theory
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Step 1 - The Ideal Case

The matrix W is block-diagonal,
each block corresponding to an underlying cluster

The rows of U are exactly K orthonormal vectors,
each representing a true cluster
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Step 2 - More General Cases
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Step 2 - Goodness of Clustering

Total variance of true clusters in the U space:

TV(U) ∶=∑
k

∑
i∈Ik

∥u(i) − c(k)∥22

in which

u(i): i-th row of U

c(k): center of underlying cluster Ik
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Step 2 - Perturbation Analysis

Let A be a general affinity tensor, and define

E ∶= A − Ã,

then TSCC (with A) achieves that

TV(U) ≲ N−(d+2)∥E∥2F
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Step 2 - Probabilistic Analysis

Let µk: underlying measure of the k-th cluster, and

α ∶= 1

σ2
∑
k

c2
p(µk) + cinc′d(µ1, . . . , µK ;σ),

in which

c2
p(µk) = ∫ c2

p(Z) dµd+2
k
(Z): flatness measure of µk

cinc′d: separation measure between all µk

Then using the polar tensor Ap, TSCC achieves that

TV(U) ≲ α with high probability
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Numerical Challenges

Complexity is high:
Cannot store/compute Ap (Nd+2 elements)

Even harder to compute W (O(Nd+3) time)

Wik = ∑
∀j1,...,jd+1

Ap(i, j1, . . . , jd+1) ⋅Ap(k, j1, . . . , jd+1)
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Numerical Challenges

Complexity is high:
Cannot store/compute Ap (Nd+2 elements)

Even harder to compute W (O(Nd+3) time)

Wik = ∑
∀j1,...,jd+1

Ap(i, j1, . . . , jd+1) ⋅Ap(k, j1, . . . , jd+1)

Ap contains a sensitive parameter σ (which should be
data-dependent); not clear how to efficiently select its
optimal value
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Problem with Uniform Sampling

Idea: (Govindu 05’) estimate W by randomly sampling
a constant c number of (d + 1)-tuples of points:

Wik ≈
c∑

t=1

Ap(i, j
(t)
1 , . . . , j

(t)
d+1) ⋅Ap(k, j

(t)
1 , . . . , j

(t)
d+1)
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Problem with Uniform Sampling

Idea: (Govindu 05’) estimate W by randomly sampling
a constant c number of (d + 1)-tuples of points:

Wik ≈
c∑

t=1

Ap(i, j
(t)
1 , . . . , j

(t)
d+1) ⋅Ap(k, j

(t)
1 , . . . , j

(t)
d+1)

Performance : Does not work for large d
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Problem with Uniform Sampling

K = 3 d-dim linear subspaces in RD, N = 100K.
Use c = 1 ⋅N, . . . , 10 ⋅N independently.
Plot of error (averaged over 500 experiments) against time
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Fixing Uniform Sampling

Why would uniform sampling fail?

Wik ≈
c∑

t=1

Ap(i, j
(t)
1 , . . . , j

(t)
d+1) ⋅Ap(k, j

(t)
1 , . . . , j

(t)
d+1)
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Fixing Uniform Sampling

Why would uniform sampling fail?

Wik ≈
c∑

t=1

Ap(i, j
(t)
1 , . . . , j

(t)
d+1) ⋅Ap(k, j

(t)
1 , . . . , j

(t)
d+1)

Only tuples of points (j(t)1 , . . . , j
(t)
d+1) sampled from

same underlying clusters matter
(those mixed are useless and even harmful!)
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Fixing Uniform Sampling

Why would uniform sampling fail?

Wik ≈
c∑

t=1

Ap(i, j
(t)
1 , . . . , j

(t)
d+1) ⋅Ap(k, j

(t)
1 , . . . , j

(t)
d+1)

Only tuples of points (j(t)1 , . . . , j
(t)
d+1) sampled from

same underlying clusters matter
(those mixed are useless and even harmful!)
However, the probability of sampling a “good” tuple
is 1/Kd+1 (small when K,d large)
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Fixing Uniform Sampling

Why would uniform sampling fail?

Only tuples of points (j(t)1 , . . . , j
(t)
d+1) sampled from

same underlying clusters matter
(those mixed are useless and even harmful!)
However, the probability of sampling a “good” tuple
is 1/Kd+1 (small when K,d large)

One way to fix this is to sample iteratively :
Fix c = 100 ⋅K.

0th iteration: estimate clusters by uniform sampling
Subsequent iterations: sample tuples from same
clusters obtained in the preceding iteration
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Fixing Uniform Sampling

Why would uniform sampling fail?

Only tuples of points (j(t)1 , . . . , j
(t)
d+1) sampled from

same underlying clusters matter
(those mixed are useless and even harmful!)
However, the probability of sampling a “good” tuple
is 1/Kd+1 (small when K,d large)

One way to fix this is to sample iteratively :
Fix c = 100 ⋅K.

0th iteration: estimate clusters by uniform sampling
Subsequent iterations: sample tuples from same
clusters obtained in the preceding iteration

Other ways: sample from local regions
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Uniform vs Iterative

Uniform Sampling: c = 1 ⋅N, . . . , 10 ⋅N , respectively

Iterative Sampling: c = N fixed in each iteration
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The Parameterσ

Common practice is to try several manually selected values,
which is inefficient and often fails:
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The Parameterσ

We automatically infer it from data.

Minimality of α ∶= 1
σ2 ∑k c2

p(µk) + cinc′d(µ1, . . . , µK , σ)

implies that optimal σ, σopt, should have upper and
lower bounds

If we divide all the computed curvatures into two groups:
(small) curvatures of within-cluster points
(large) curvatures of between-cluster points,

then σopt is the maximum of the small curvatures.

Claim:
σopt ∈ [c (N ⋅ c/Kd+1) ,c (N ⋅ c/K)],

where c: vector of all N ⋅ c curvatures, sorted in
nondecreasing order
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From Linear to Nonlinear
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From Linear to Nonlinear
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Two natural ways of extending SCC for manifold clustering:

Kernelize SCC: linearize data in a feature space and
apply SCC there

Localize SCC: apply SCC for near neighbors to
compute pairwise weights
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Kernel SCC (KSCC)

The idea is to find a feature map Φ to map data to linear
manifolds and then apply SCC in the feature space
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Kernel SCC (KSCC)

The idea is to find a feature map Φ to map data to linear
manifolds and then apply SCC in the feature space
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(Φ(x) = Φ(x1, x2) = (x1, x2, x
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2))

Since cp(x1, . . . ,xd+2)=diameter*volume/edgeLengths
and hence SCC depends only on dot products, we only
need to specify the kernel function
k(x,y) =< Φ(x),Φ(y) > and use it to replace dot product
in SCC (e.g., k(x,y) =< x,y > +∥x∥22 ⋅ ∥y∥22)
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KSCC: Some Examples
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Local SCC

Idea: Fix an integer m ≥ d + 2. Compute pairwise weights
only using and for nearest neighbors

Wik = ∑
j1,...,jm−1∈N(i)

Ap(i, j1, . . . , jm−1) ⋅Ap(k, j1, . . . , jm−1)

for k ∈ N(i), and 0 otherwise
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Local SCC

Idea: Fix an integer m ≥ d + 2. Compute pairwise weights
only using and for nearest neighbors

Wik = ∑
j1,...,jm−1∈N(i)
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Local SCC

Idea: Fix an integer m ≥ d + 2. Compute pairwise weights
only using and for nearest neighbors

Wik = ∑
j1,...,jm−1∈N(i)

Ap(i, j1, . . . , jm−1) ⋅Ap(k, j1, . . . , jm−1)

for k ∈ N(i), and 0 otherwise
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Application: Motion Segmentation
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Application: Motion Segmentation

Problem : cluster (pre-collected) trajectory vectors

z(i) = (x(i)1 , y
(i)
1 , x

(i)
2 , x

(i)
2 , . . . , x

(i)
F

, y
(i)
F
)′, 1 ≤ i ≤ N

of feature points tracked on different moving objects
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Application: Motion Segmentation

Problem : cluster (pre-collected) trajectory vectors

z(i) = (x(i)1 , y
(i)
1 , x

(i)
2 , x

(i)
2 , . . . , x

(i)
F

, y
(i)
F
)′, 1 ≤ i ≤ N

of feature points tracked on different moving objects

Under the affine camera model, i.e.,

(x(i)
f

, y
(i)
f
)′ = (Af)2×3 r

(i)
3×1 + (bf)2×1 ,

we have for trajectories on k-th moving object

[z(1), . . . ,z(Nk)]2F×Nk
=

⎡⎢⎢⎢⎢⎢⎢⎣

A1 b1⋮ ⋮
AF bF

⎤⎥⎥⎥⎥⎥⎥⎦2F×4

[r(1) . . . r(Nk)

1 . . . 1
]
4×Nk
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Application: Motion Segmentation

Problem : cluster (pre-collected) trajectory vectors

z(i) = (x(i)1 , y
(i)
1 , x

(i)
2 , x

(i)
2 , . . . , x

(i)
F

, y
(i)
F
)′, 1 ≤ i ≤ N

of feature points tracked on different moving objects

Fact : Trajectories associated with same moving object
live on a distinct 3D affine subspace

Tool : hybrid linear modeling via SCC
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Performance on a Benchmark

Hopkins155 Database of 155 video sequences: 120 two
motions (N = 266, F = 30), 35 three motions (N = 398, F = 29)

classfication two motions three motions
errors mean median mean median

RANSAC 5.56% 1.18% 22.94% 22.03%
GPCA 4.59% 0.38% 28.66% 28.26%
LSA 5 6.73% 1.99% 29.28% 31.63%
LSA 4K 3.45% 0.59% 9.73% 2.33%
MSL 4.14% 0.00% 8.23% 1.76%
SCC 2F 1.40% 0.10% 5.77% 2.21%
SCC 5 2.10% 0.26% 4.94% 1.70%
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Summary & Open Questions

Presented SCC + kernelization & localization

SCC
Automatic inference of K and dk

Further improvement for mixed dimensions
Theoretical investigation of iterative sampling
New initialization (e.g., by multiscale SVD)

Kernel SCC
Optimal kernel selection

Local SCC
Automatic tuning of the parameters (e.g.,
neighborhood size)
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