The Logic of Statistical Inference-Testing Hypotheses

- Confirming your research hypothesis (relationship between 2 variables) is dependent on ruling out
 - Rival hypotheses
 - Research design problems (e.g. measurement error, non-representative sample), and/or
 - Chance—sampling error-the natural tendency of any sample to differ from the population from which it was drawn

Statistical inference

- The use of theoretical sampling distributions to test hypotheses
- Theoretical sampling is based on the premise that no relationship exists between the two variables

Wait--I thought the research hypothesis said there <u>was</u> a difference...!

- Null hypothesis--a statement that there is no relationship between two variables of interest. Another way of saying it:
- Any relationship between these variables is only due to *chance*, not a real relationship that exists *in the population* (i.e. sampling error)

The opposite of "Null" Is...

- The "research hypothesis", a.k.a "alternative hypothesis"
- This is the one we worked on last semester, e.g.
 - "There <u>is</u> a difference between these two variables (e.g. "There is a difference in outcomes, comparing the experimental tx and 'tx as usual""), OR
 - "The experimental treatment will result in an improved outcome"
- Which one is one-tailed? Two-tailed? (Hint: remember "directional hypothesis"?)

Where do the "tails" come from?

- From the theoretical sampling distribution
- It's a frequency polygon that represents the "space" for the entire population of statistics results for a ratio/interval variable
- It shows out of all the "area under the curve," the tiny probability of rejecting the Null hypothesis in favor of the research hypothesis

Area under the normal curve

Statistical inference

- So—inferring whether or not a relationship between variables exists in the population, from your sample, requires disproving or rejecting the Null Hypothesis ("Innocent until proven guilty")...
 - By calculating (or computing) a test statistic
 - Then locating where the statistic falls in the theoretical sampling distribution, and from that
 - Determining the likelihood (probability) that the statistical result you found is due to chance alone (sampling error)

What's a p value?

- Probability: the likelihood that an event will
 OCCUr (# actual events ÷ # possible events)
- How do we use probability in inference testing?
 - To quantify our confidence that our statistical result is not just due to sampling error (chance)
 - To confirm or disconfirm our hypotheses

The tiny probability...

- If a statistic result falls in the tiny "critical region" then there is low probability that our results are due to chance alone meaning that there is a good chance there is a positive relationship between variables, and we can reject the Null Hypothesis (Read this aloud a few times)
- What is the cutoff? How tiny is tiny? We set a threshold for the critical region ahead of time, called the "alpha level"
 - $> \alpha = .05$ is typical in social sciences research
 - \triangleright In some cases higher, α = .10

Interpreting the p value

- Each statistic result is accompanied by a p value
- SPSS gives you the actual p value by using the statistic's computation formula and the distribution tables for the statistical test you've chosen
- If your actual *p* value (from SPSS) equals or is smaller than your alpha, then we can say the null hypothesis can be rejected

For example: The experimental group's outcome improved by 10 points, the control group by only 2. Let's say the difference in post-treatment scores has a *p* value of .046. So:

– "The probability is less than 5 in 100 (p = .046) that the difference between the groups is due to chance alone. We can reject the Null (that there is no difference) in favor of the alternative (one-tailed) hypothesis, that treatment outcomes will improve more for the experimental group."

Summary—the 8 steps to hypothesis testing

- 1. Identify your independent variable(s)
- 2. Identify your dependent variable
- 3. State the Null Hypothesis
- 4. State the Alternative Hypothesis
- 5. Identify appropriate statistical test and alpha level
- 6. Review results (SPSS output)
- 7. Describe results and decision to reject or not reject Null
- 8. Discuss results and implications

Which statistics?

- Using the area under the Normal curve to determine this "critical region" has an important requirement—the data must be "normally distributed" in the population, e.g. when plotted on a frequency polygon the line should follow the normal curve.
- At the very least, the data must be ratio or interval
- Relevant statistics for these data include t-tests, Anova, and linear regression (all coming up in future exciting classes)

What about non-ratio/interval data?

- Like nominal data, for example
- Nominal level data (gender; satisfied vs. not; ethnicity; receiving services vs. not) have another type of distribution (by definition it is skewed, not symmetric), called the *Binomial Distribution*
- But the basic logic of inference testing is the same
- It requires non-parametric statistical tests (vs. parametric tests for normally distributed data),
 like The Chi-Square Test of Association

Chi Square

Also known as:

- Chi Square Test of Association
- Chi Square Test of independence
- X^2
- Crosstabulation (Chi Square is one type)
 For use with:
- Two or more <u>nominal</u> level variables
- Typically used to describe sample
- Generally does not address causality

Example of Chi Square Used to Describe Sample (In Red)

	Condition (Randomly Assigned)			
	Experimental	Control	Difference	
Age	43.5	43.5	No diff	
	SD = 7.8	SD = 4.7		
Gender			No diff	
Male	61%	60%		
Race			No diff	
White	37%	38%		
Black	61%	62%		
Hispanic	2%			
Employed (at least	25%	19%	No diff	
one day per month				
Has marketable	66%	66%	No diff	
skill or trade				
Current driver's	26%	11%	<i>P</i> < .05	
license				

Excerpted from: Zanis, D. A., Coviello D., Alterman, A. I., & Appling, S. E. (2001). A community-based trial of vocational problem-solving to increase employment among methadone patients. *Journal of Substance Abuse Treatment*, 21, 19-26.

Example of Chi Square Used to Show Results

	% women ≥ once per week		% men ≥ once per week	
	African American	White	African American	White
Visits by friends	46.76	44,33*	51.27	42.32
Visits to friends	37.43	37.36	50.33	38,89*
Phone close friends or relatives	82.33	89.21*	68.34	75.32*
Church, clubs, lodges, other groups	60.76	53.25*	43.91	43.91
Someone to share private feelings, concerns	82.69	88.23*	81.65	84.96*

From: Snowden, L. R. (2001). Social embeddedness and psychological well-being among African Americans and Whites. *American Journal of Community Psychology*, 29, 519-536.