
Security and Computer Architecture
 R_Ismeet Kaur Makkar

Computer Science Department
San Jose State University

San Jose, CA 95192
408-924-1000

ismeettkaur@gmail.com

ABSTRACT
Information Security is the process of protecting data
and information on any device, which has a processor and
memory, from unintended and unauthorized access, use,
disclosure, revelation, modification, or destruction as well as over
all the private and public networks including the Internet. Security
deals with three major areas: confidentiality, integrity and
availability. It is imperative to design secured software given the
growth in importance and the increase in reliance on computer
systems, tablets and mobile devices throughout the world. Design
for security is an essential aspect of the design of future
computers. However, security is not well understood by the
computer architecture community. Many important security
aspects have evolved over the last several decades in the
cryptography, operating systems, and networking communities. It
is essential for computer science and security professionals to
understand both hardware and software security solutions. We
will briefly talk about hardware support for: buffer-overflow
prevention, secure information processing, cryptography,
dynamic information flow tracking, tamper resistant and verified
software, address-space randomization to prevent code injection,
hardware-based virus and intrusion detection, secure
cryptographic co-processors, and various "trusted" computing
initiatives.

1. INTRODUCTION
Securing important information and implementing means to
ensure that the information is not breached has been given prime
importance since early ages. The need to protect stored data and
its’ transmission has become all the more important considering
the growth and widespread use of electronic devices, computer
systems, tablets and mobile devices, for data generation and
processing and all business being conducted on Internet. A
majority of organizations have implemented or are in the process
of implementing security improvements to their systems,
according to Symantec. Computer Security has many definitions,
the most common being “preservation of confidentiality, integrity
and availability of information.” It is essential to understand the
three terms individually before we dig deeper into security.

Confidentiality deals with preventing unauthorized reading of
information. A common example would be bank customers who
would not want their account information be read by anybody.
Integrity deals with detecting and preventing unauthorized writing
of data. An example again would be bank which does not want
the customer to alter their account balances. Data availability has

of-late been a fundamental issue. With the businesses being
conducted on the Internet globally, it is the responsibility of the
vendors that data is always available. Denial of service attacks on
a few vendors every now and then, cut down the access to
information.
Going beyond CIA, Information security comprises of four
components: cryptography, access control, protocols, and
software. Cryptography makes up the techniques to conceal data
in such a way that only the people authorized or users who have
the key can read/alter the data. Access control deals with
authentication - whether or not a user has access to information,
and authorization – what are the privileges of the user in
accessing the information. Protocols define how to securely
transfer information from one end to another ensuring
confidentiality and integrity. It is rightly said that a system is no
more secure than the human responsible for operating the
computer system. After that the easiest way to compromise the
security of the system is by exploiting the bugs in the software or
introduction of bugged software in the system using external
media. The most common form of attack exploiting the software
has been buffer overflow.

2. BUFFER OVERFLOW
Buffer overflow is an unusual condition when a software program
writes excessive data onto the memory buffer thereby
overrunning the buffer's boundary and overwriting the data in the
adjacent memory. The overflow can occur due to insufficient
check conditions on the size of data to be written or copied to the
destination. The exploit or security breach occurs when the
overflowing data corrupts the data in the adjacent memory
addresses. Buffer overflow is the most common vulnerability that
is used by the attackers to execute malicious code on the target
system, gain access to unauthorized sections on the system,
perform incorrect operations using the software or bring the
system down. Buffer overflow attacks have been known for 25
years yet they still pose the biggest threat to all software.[3]

2.1 Buffer Overflow - Existing Solutions
There are a number of solutions to guard against code corruption
by untrusted data but all the solutions have one problem or
another.
Canary-based buffer overflow protection uses random known
values that are placed between a buffer and control data on the
stack to monitor buffer overflows. Canaries are placed before the
beginning of protected data and the value of the canary is verified
each time protected data is used. The value of canary will change
when data in the protective memory bound is overwritten by

http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Anomaly_in_software
http://en.wikipedia.org/wiki/Computer_program

buffer overflow attack, and thus canary will provide a check for
buffer overflow detection. Canary has been implemented in
software using stack linking information and heap chunk
metadata, and hardware implementations have been proposed to
protect the stack return address and work with unmodified
binaries.[1]

StackGhost is a hardware based implementation for buffer
overflow protection. It implements a XOR based encryption of
the return address. It was invented by Mike Frantzen and uses a
special hardware feature of SPARC architecture to detect
modifications to the return address pointers and protect the
software application without adding any additional check. It is a
simple tweak to the windows register fill and spill functions
which make it difficult for the attackers to exploit buffer
overflows. There is some performance impact which is being
optimized and integrated continuously.[3b]

However, buffer overflows may be exploited without overwriting
canary values in many situations. For example, in a system with
stack canaries, buffer overflows may overwrite local variables,
even function pointers, because the stack canary only protects
stack linking information. Similarly, heap overflows can
overwrite neighboring variables in the same heap chunk without
overwriting canaries. Additionally, this technique may change
data structure layout by inserting canary words, breaking
compatibility with legacy applications. Canary-based approaches
also do not protect other memory regions such as the global data
segment, BSS or custom heap allocation arenas.

Non-executable data protection prevents stack or heap data from
being executed as code. Some hardware (and many operating
systems) support this no execute, or NX bit. Modern hardware
platforms, including the x86, support this technique by enforcing
executable permissions on a per-page basis. Data Execution
Prevention (DEP) is well known among software developers
when writing code to allow code to be executed only in the
memory areas marked as executable. Intel markets the feature as
the XD bit, for eXecute Disable. AMD uses the marketing
term Enhanced Virus Protection and the ARM architecture refers
to the feature as XN for eXecute Never. This approach, however,
only prevents buffer overflow exploits that rely on code injection.
It is not essential for an attacker to inject code to take control.
Attackers can take control of an application by using existing
code in the application or libraries which can be just as powerful
as a code injection attack.[1]

The attackers can defeat canary defense by trying to execute
already existing piece of code in the codebase. This is
called return-to-libc attack and the attacker must be able to locate
the code to be executed, while other attackers trying to
execute shellcode injected on the stack have to find the stack first.

Address space layout randomization (ASLR) is a buffer overflow
defense that randomizes the memory locations of system such that
the key areas of the program are loaded and arranged randomly.
In a system with ASLR, the base address of each memory region,
i.e. stack, executable, libraries, and heap, is randomized at startup.
A buffer overflow attack will not work properly as it is not easy
to locate the security-critical information in memory. ASLR has
been adopted on both Linux and Windows platforms. However,
ASLR is not backwards compatible with legacy code, as it
requires programs to be recompiled into position-independent
executables and will break code that makes assumptions about
memory layout. ASLR has to be switched off or disabled for the
complete application and dependent processes if ASLR is not
supported by the executable or any shared libraries. Some real-
world exploits such as the Macromedia Flash buffer overflow
attack on Windows Vista bypassed ASLR because the vulnerable
application or its third-party dependent libraries did not have
ASLR support. Attackers can easily elude ASLR on x86-based
systems using brute-force techniques. ASLR implementations can
be compromised if pointer values are leaked to the attacker by
techniques such as format string attacks.

2.2 Hardware Solutions
There is a lot of research done for an effective hardware solution
against buffer overflow. To mention a few:

1. Lee et. al. and Ozodganoglu et. al. independently presented a
method of protecting the return address stack by copying the
return address onto another hardware managed stack. This stack
has backing store in a protected area of memory. When the
function returns from a call, the processor checks to make sure
that the return value on the two stacks match.

2. HSAP employs a stack smashing protection which does not
allow variables passed into other functions to be
allocated on the stack. HSDefender also employs similar
mechanism as HSAP. They use XOR encrypted return address in
an extra register.

http://en.wikipedia.org/wiki/Intel
http://en.wikipedia.org/wiki/Advanced_Micro_Devices
http://en.wikipedia.org/wiki/ARM_architecture
http://en.wikipedia.org/wiki/Return-to-libc_attack
http://en.wikipedia.org/wiki/Shellcode

3. XOMOS [6] is proposed to solve the buffer overflow problem
through the use of signed memory. It is based on the theory that
the complete code must be divided into modules and all the
modules that need to be secured from code execution will have a
key. Each module that needs to be secured is copied to the
memory and is cryptographically signed using a key and then
written back for storage. Untrusted applications or parts of code
are given a different key and a separate piece of memory to
execute with. If the untrusted code attempts to overwrite memory
which it does not have privileges to write to, it will be unable to
create a valid corresponding signature. When the memory is used,
the incorrect signature will be detected and the code will not be
executed. This approach could be used to provide protection
against buffer overflows, but requires that the users rewrite their
application completely by partitioning the code that could have a
buffer overflow.

4. PointGuard is a compiler-based buffer overflow defense
technique where the pointer and addresses are encoded using
XOR operation, thus obfuscating the pointer and return address.
This prevents write-based buffer overflow attacks but is not
effective on read-based attacks. Microsoft did not release
PointGuard but implemented an API based on similar
functionality for Windows XP SP2 and Windows Server 2003
SP1 operating systems.[3,7]

5. Similar address protection techniques, called SecureBit and
SecureBit2 have been developed by Krerk Piromsopa and Richard
J. Enbody where the return address is checked against a redundant
copy of the address guarded by a bit or word. It is based on the
principle that it is necessary to preserve the integrity of the
address across domain to prevent buffer overflow attacks.[7]

Intel’s Trusted Execution Technology (Intel TXT) uses
cryptographic techniques and Trusted Platform Module (TPM) to
provide trust measurements so that local and remotely managed
applications can use these measurements for making trust
decisions. This technology is aimed at defending the systems
against any form of software based attacks which steal
information from the system by injecting code, modifying the
BIOS code or changing the platform configuration. Intel’s new
generation processors, Intel® Core™ vPro™ processor family,
the Intel® Xeon® processor E5-2600, E5-1600, and E3-1200
product families, are all based on Intel TXT. [8]

3. SECURE INFORMATION PROCESSING
With the increase in amount of information available and the
number of devices consuming that information it is important that
the information be processed in a fast and secure manner. It holds
such importance that there are government standards for secure
information processing. FIPS (Federal Information Processing
Standards) are a set of standards that describe document
processing, encryption algorithms and other information
technology standards for use within non-military government
agencies and by government contractors and vendors who work
with the agencies.
We will discuss some cases which have been developed for secure
information processing.

3.1 Secure Coprocessors
Secure coprocessors provide a trusted environment for data
storage and high computation to enable secured applications
which require such conditions. But the technology in practice
requires very high performing devices that are able to perform
general computations along with specialized computations for a
specific application in a secured and practical manner. This
technology lacks the same thing that most computing applications
lack – trustworthiness. The attackers can have access to the
hardware, software, and data at its storage including the
cryptographic keys and algorithms. A secure platform for building
high-performance programmable secure coprocessor has been an
area of research for a long time. The qualities that the platform
must possess are: Tamper resistance, that is physical security
against tamper attacks, fast speeds, that is high-speed
cryptographic performance, general-purpose programmability
which allows for programmers to easily develop and deploy
secure software for these devices, and a security architecture that
puts all this together securely. Sean W. Smith and Steve
Weingart of IBM Secure Systems and Smart Cards developed a
FIPS Level 4 Secure coprocessor architecture which is immune to
physical attack so that it cannot reveal any internal hardware
secrets. The architecture is based on two primary principles:
tamper detection which is ensuring that the device detects all
attacks, and tamper response which means ensuring that the
device responds to any form of attacks that are detected by
zeroizing any internal secrets before they are exploited or
exposed.[9]

3.2 Secure processing on Mobile
Mobile devices make up a large portion of the devices connected
on the Internet that generate data and process the information for
a lot of businesses. This has been possible because of the smart
mobile platforms like Android and Apple iOS. The new platforms
pose a yet another security risk if these devices are being used for
business critical data like enterprise emails or business reports.
There are security mechanisms that have been implemented in
these mobile platforms but a lot of security problems are reported
on regular basis. This has led to a belief that a common and trust-
worthy mobile platform has to be built for secure information
processing especially for enterprises.

Some researchers have come together and created a prototype for
mobile platform based on Android platform to combat typical
attack scenarios. This architecture is based on Trusted Computing
technology that implements consistent behavior of the computing
systems. The consistent behavior is ensured by performing
integrity checks on the system and then discovering any
unexpected or unwanted characteristics. The basis of the
technology is the integrity of the system and thus is implemented
in hardware, as it is difficult to attack than corresponding software
implementation. The researchers have come up with a hardware
component called Trusted Platform Module (TPM) which
implements a lot of reliable modules in the mobile platform and
incorporates strong cryptographic functions as well as a true
random number generator instead of pseudo random ones. They
call this Secure mobile business information processing.[10]

http://www.intel.com/content/www/us/en/processors/vpro/core-processors-with-vpro-technology.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-5000-sequence.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-5000-sequence.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e3-family.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-processor-e3-family.html

4. CRYPTOGRAPHY
Cryptography comes from a Greek word meaning the art of
writing secrets. Security is achieved using cryptography by
transforming the given data into unintelligible form using a secret
key, this means that the data is converted to a form which cannot
be understood by anyone unless the reverse transformation is
applied using the same/corresponding secret key. This process
ensures that the information is retrieved and accessible only to the
users which are meant to have access to the information. The first
transformation when a key is applied to the plain text/data is
called encryption and it produces cipher text that is intangible.
This intangible data, cipher text can be converted back to readable
information, plain text, by a process called decryption using the
corresponding key. There are a number of algorithms that are
designed to provide protection to sensitive information on the
system where it is stored or when it is in transit over networks.

Cryptographic algorithms are either based on private-keys or
public-key systems. Symmetric key ciphers (or private-key
ciphers) use a shared secret key between the sender and receiver
to encrypt as well as decrypt the information. AES is a well-
known crypto algorithm that uses symmetric key. Asymmetric
key cipher systems (or public-key ciphers) require two keys for
each user – a private key that is kept secret and a public key
which is made public to all. Both the keys are used to perform
encryption and decryption based on the algorithm used. An
example of such algorithm is RSA where public key of the
recipient is used for encryption of data and receiver uses his
private key to decrypt the cipher.

Having two keys is useful because the secret-key need not be
shared between the users before starting the communication as is
required in private-key cipher systems. But public key cipher
systems take a longer processing time. They usually involve
calculations using 1024-bit precision numbers which are
computationally expensive, by as much as a factor of 1000, than
equivalent private-key ciphers. Thus, typical cryptographic
protocols like Secure Sockets Layer (SSL) use a public key
algorithm to exchange the private-key among the communicating
parties and then use the private key to share data amongst
themselves. SSL is a standard secure protocol that provides secure
communication between web servers and web clients. It is
supported by most popular web browsers. Usually private-key has
a faster processing speed which is the key to achieving fast
response times except when the session is very short where public
keys can be used.

Cryptographic algorithms provide the basis of securing
information and hence need to be strong and have to be protected
against tampering. The algorithms can be implemented in
software, hardware, or a combination of both. The lowest cost

solution is software implementation but is most prone to errors
and exploits. Hardware implementation on the other hand is
comparatively secured. An example of the hardware-only
approach is the IDEA engine which implements and executes
IDEA cipher efficiently with high performance output. However
the problem with hardware approach is that the hardware is not
flexible to be used for any other cryptographic algorithm. A team
of researchers, Lisa Wu, Chris Weaver, and Todd Austin, have
developed a high performance flexible architecture for secure
communication. CryptoManiac is a fast and flexible
cryptographic co-processor and addresses the primary bottleneck
of efficiency in cipher systems through the application of an
efficient VLIW architecture.[11]

Another type of hardware focused on secured cryptosystem is
Hardware Security Module (HSM). This is a dedicated piece of
crypto processor which has been designed specifically for the
protection of crypto algorithms and ensuring a longer crypto key
life cycle. The hardware security Modules have been developed
by Safenet, trusted name in security and act as trusted entities that
protect the cryptographic infrastructure of the users by processing,
managing, and storing the keys of cryptographic algorithms inside
a hardened, tamper-resistant device securely. HSMs provide
protection for transactions, identities, and applications by securing
cryptographic keys and provisioning encryption, decryption,
authentication, and digital signing services for a wide range of
applications.[12]

In general a cryptographic hardware component can be:
• a separate processor integrated into the CPU as a special

purpose processor

• integrated in a coprocessor on a circuit board

• incorporated on a chip as an extension to circuit board which
can be connected to the mainboard using a BUS interface
like PCI, etc.

• an instruction set architecture like AES instruction set which
is an integral part of the CPU

The most common use of cryptographic algorithms is in smart
cards. The smart cards have a chip which ensures security by

performing check on the cardholder credentials (typically a PIN
code) and performing cryptographic operations. The cards
initially had a simple architecture and were embedded with the
algorithm, which provided a few services but no cryptographic
computation, and an 8-bit core, running at few tens of megahertz.
Thus cryptographic hardware blocks had to be added to the chip.
This helps the data processing to be faster than if software
cryptographic modules are used. The disadvantage of using the
hardware based implementation approach is higher cost of
implementation than software based implementation.
Maxim USIP PRO is an example of a secure single smart chip,
which runs software implementations of the most common
cryptographic algorithms (Table 1) very efficiently.[13]

Table 1. USIP PRO Cryptographic Performance
Algorithms Speed
SHA-1 2083kBps
RSA 2048 CRT decrypt 400ms
RSA 2048 encrypt 18ms
ECDSA P-192 sign 23ms
ECDSA B-163 sign 16ms

5. DYNAMIC INFORMATION FLOW
TRACKING
A wide range of security attacks from memory corruptions to
SQL injections can be prevented using Dynamic Information
Flow Tracking (DIFT). DIFT architecture associates a tag with
every memory byte and word. This tag is used to mark the data
that comes from sources not trusted by the system. These tags are
carried forward in most operating systems when operations are
performed on memory locations with these tags. This means that
the tags are propagated from source to destination operands on
performing operations. If tagged data memory is used in any
unsafe way such as execution of an SQL command or
dereferencing a pointer that has been tagged, a security exception
is raised. Dynamic information flow tracking uses a simple
hardware mechanism to track spurious information flows at run-
time. On every operation the processor determines whether the
result is spurious or not based on the inputs and the type of the
operation. With the tracked information flows, the processor can
easily check whether an instruction or a branch target is spurious
or not, which prevents changes of control flows by potentially
malicious inputs and dynamic data generated from them.

DIFT has several advantages as a security mechanism. DIFT
analysis can be used on unmodified binaries. DIFT using
hardware implementation has very less overhead and operates
correctly with all types of legacy applications, even those with
multithreading and self-modifying code. DIFT can potentially
provide a solution to the buffer overflow problem that protects all
pointers (code and data), has no false positives, requires no source
code access, and works with unmodified legacy binaries and even
the operating system.

A group of researchers [14] have worked on DIFT on Linux to
solve buffer overflow problem using two policies - bounds-check
recognition (BR) and pointer injection (PI). The approaches differ
in tag propagation rules, the conditions that indicate an attack, and

whether tagged input can ever be validated by application code.
G. Edward Suh, Jaewook Lee, Srinivas Devadas [15] proved in
their paper that DIFT can be used for Secure code execution.

6. MORE TOPICS
Intrusion detection is a major research area in security. It is the
process of monitoring computer and network activities for any
suspicious action and analyzing the activities to observe and
discover any signs of intrusion in the system. The IDS or
intrusion detection system implemented in software is the most
common but is not absolute in security and is computationally
slower. The recent research in hardware based intrusion detection
and prevention system used along with software IDS has made it
possible for faster processing and better security.

Software piracy is a big concern in the industry today. There is
active research going in security domain to come up with
effective means to identify software piracy and develop copy and
tamper resistant software. The future of software is hosting the
software on a hardware which is tamper proof and using the
software directly from the hardware. One implementation of such
a system is that the software is written on a hardware which is a
form of execute-only memory (XOM). This allows for the
software instructions to be executed directly from the dongle but
these instructions cannot be altered or modified in any way. The
software or instructions when copied from the hardware are
encrypted and non-readable on any system. This ensures that the
software would not execute from anywhere outside the given
hardware.

7. CONCLUSION
With the growing amount of information and the ever-posing
threat to this information, it is high time to take security as a
prominent factor when designing applications or systems. 2014
has been a year of massive hacks. The critical information lost to
Home Depot, Target and USPS exploits are a big security concern
for all the users throughout the world. Software is known to have
bugs and thus prone to exploits which can take control of the
system. Hardware implementation, on the other hand, can be
costly if it caters to a specific problem and cannot be used to
solve others. It is difficult to achieve absolute security but a
combination of software and hardware security features can take
us a long way.

8. REFERENCES
[1] Information Security: Principles and Practice by Dr. Mark
Stamp
[2] http://en.wikipedia.org/wiki/Computer_security
[3] Buffer Overflow:
http://en.wikipedia.org/wiki/Buffer_overflow
[3b] Buffer Overflow Protection:
http://en.wikipedia.org/wiki/Buffer_overflow_protection
[4] Address Space Layout Randomization:
http://en.wikipedia.org/wiki/Address_space_layout_randomizatio
n
[5] Hardware and Binary Modification Support for Code
Pointer Protection From Buffer Overflow
Authors: Nathan Tuck, Brad Calder, George Varghese

http://www.maximintegrated.com/en/USIP
http://www.docstoc.com/docs/90595222/Inter-Process-Communication---Message-Passing
http://softtalkblog.com/2010/08/16/how-to-judge-the-best-parallel-programming-paradigm/

[6] David Lie, Chandramohan Thekkath, and Mark Horowitz.
Implementing an untrusted operating system on trusted
hardware. In Symposium on Operating Systems Principles,
October 2003
[7] Secure Bit2: Transparent, Hardware Buffer-Overflow
Protection
http://www.cse.msu.edu/~cse825/SBit2.pdf
[8] http://www.intel.com/content/www/us/en/architecture-and-
technology/trusted-execution-technology/malware-reduction-
general-technology.html
[9] Building a High-Performance, Programmable
Secure Coprocessor
Authors: Sean W. Smith, Steve Weingart
[10] Secure mobile business information processing
Authors: Nicolai Kuntze, Roland Rieke, Karsten Sohr, Tanveer
Mustafa, Kai-Oliver Detken
[11] CryptoManiac: A Fast Flexible Architecture for Secure
Communication

http://web.eecs.umich.edu/~taustin/papers/ISCA01-
cryptomaniac.pdf

[12] http://www.safenet-inc.com/data-encryption/hardware-
security-modules-hsms/#sthash.5sjcarMj.dpuf

[13] http://www.maximintegrated.com/en/app-
notes/index.mvp/id/5421

[14] Real-World Buffer Overflow Protection for Userspace &
Kernelspace

Authors: Michael Dalton, Hari Kannan, Christos Kozyrakis

https://www.usenix.org/legacy/event/sec08/tech/full_papers/dalto
n/dalton_html/

[15] Secure Program Execution via Dynamic Information Flow
Tracking

Authors: G. Edward Suh, Jaewook Lee, Srinivas Devadas

http://www.safenet-inc.com/data-encryption/hardware-security-modules-hsms/#sthash.5sjcarMj.dpuf
http://www.safenet-inc.com/data-encryption/hardware-security-modules-hsms/#sthash.5sjcarMj.dpuf

	1. INTRODUCTION
	2. BUFFER OVERFLOW
	2.1 Buffer Overflow - Existing Solutions
	There is a lot of research done for an effective hardware solution against buffer overflow. To mention a few:
	1. Lee et. al. and Ozodganoglu et. al. independently presented a method of protecting the return address stack by copying the return address onto another hardware managed stack. This stack has backing store in a protected area of memory. When the func...
	Intel’s Trusted Execution Technology (Intel TXT) uses cryptographic techniques and Trusted Platform Module (TPM) to provide trust measurements so that local and remotely managed applications can use these measurements for making trust decisions. This ...

	3. SECURE INFORMATION PROCESSING
	3.1 Secure Coprocessors
	3.2 Secure processing on Mobile

	4. CRYPTOGRAPHY
	Cryptographic algorithms are either based on private-keys or public-key systems. Symmetric key ciphers (or private-key ciphers) use a shared secret key between the sender and receiver to encrypt as well as decrypt the information. AES is a well-known ...
	Having two keys is useful because the secret-key need not be shared between the users before starting the communication as is required in private-key cipher systems. But public key cipher systems take a longer processing time. They usually involve cal...
	Cryptographic algorithms provide the basis of securing information and hence need to be strong and have to be protected against tampering. The algorithms can be implemented in software, hardware, or a combination of both. The lowest cost solution is s...
	In general a cryptographic hardware component can be:

	5. DYNAMIC INFORMATION FLOW TRACKING
	6. MORE TOPICS
	7. CONCLUSION
	8. REFERENCES
	[12] http://www.safenet-inc.com/data-encryption/hardware-security-modules-hsms/#sthash.5sjcarMj.dpuf
	[13] http://www.maximintegrated.com/en/app-notes/index.mvp/id/5421

	[14] Real-World Buffer Overflow Protection for Userspace & Kernelspace
	https://www.usenix.org/legacy/event/sec08/tech/full_papers/dalton/dalton_html/
	[15] Secure Program Execution via Dynamic Information Flow Tracking
	Authors: G. Edward Suh, Jaewook Lee, Srinivas Devadas

