Review of Probability Concepts

Appendix B

Prepared by Vera Tabakova, East Carolina University

Appendix B: Review of Probability Concepts

- B.1 Random Variables
- B.2 Probability Distributions
- B.3 Joint, Marginal and Conditional Probability Distributions
- B.4 Properties of Probability Distributions
- B.5 Some Important Probability Distributions

rinciples of Econometrics, 3rd Edition

Slide B-2

B.1 Random Variables

- A random variable is a variable whose value is unknown until it is observed.
- A **discrete random variable** can take only a limited, or countable, number of values.
- A continuous random variable can take any value on an interval.

Principles of Econometrics, 3rd Edition

Slide B-3

B.2 Probability Distributions

- The probability of an event is its "limiting relative frequency," or the proportion of time it occurs in the long-run.
- The **probability density function** (*pdf*) for a discrete random variable indicates the probability of each possible value occurring.

$$f(x) = P(X = x)$$

 $f(x_1) + f(x_2) + \dots + f(x_n) = 1$

Slide B-4

rinciples of Econometrics, 3rd Edition

Table B. 1	Probabilities of a Col	lege Degree
College Degree	x	f(x
No	0	0.73
Yes	1	0.27

B.2 Probability Distributions

• The **cumulative distribution function** (*cdf*) is an alternative way to represent probabilities. The *cdf* of the random variable *X*, denoted *F*(x), gives the probability that *X* is less than or equal to a specific value *x*.

$$F(x) = P(X \le x)$$

Slide B-7

rinciples of Econometrics, 3rd Edition

Ta b l e	B.2 A pdf and cdf	
x	f(x)	F(z)
0	0.05	0.0
1	0.50	0.5
2	0.10	0.6
3	0.10	0.7
4	0.25	1.0

B.2 Probability Distributions

• For example, a **binomial random variable** *X* is the number of successes in *n* independent trials of identical experiments with probability of success *p*.

$$P(X = x) = f(x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!} \text{ where } n! = n((n-1)(n-2)\cdots(2)(1)$$
Principles of Econometrics, 3rl Edition Stide B:

B.3 Joint, Marginal and Conditional Probability Distributions

B.3 Joint, Marginal and Conditional Probability Distributions

x					
1	2	3	4		
0.19	0.06	0.04	0.02		
0.28	0.19	0.14	0.08		
		1 2 0.19 0.06	1 2 3 0.19 0.06 0.04		

B.3.1 Marginal Distributions	
$f_X(x) = \sum_y f(x, y) \text{ for each value } X \text{ can take}$ $f_Y(y) = \sum_x f(x, y) \text{ for each value } Y \text{ can take}$	(B.2)
$f_{Y}(y) = \sum_{x=1}^{4} f(x, y) y = 0, 1$ $f_{Y}(1) = .19 + .06 + .04 + .02 = .31$	
Principles of Econometrics, 3rd Edition	Slide B-14

able B	.4 Mar	ginal Di	stributio	ons for 2	X and
		;	x		
у	1	2	3	4	$f_Y($
0	0.19	0.06	0.04	0.02	0.3
1	0.28	0.19	0.14	0.08	0.6
$f_X(x)$	0.47	0.25	0.18	0.10	1

B.3.2 Conditional Probability	
• Two random variables are statistically independent if the probability that <i>Y</i> = <i>y</i> given that <i>X</i> = <i>x</i> , is the same as the unconditional probability that <i>Y</i> = <i>y</i> .	conditional
P(Y = y X = x) = P(Y = y)	(B 4)
$f(y x) = \frac{f(x,y)}{f_X(x)} = f_Y(y)$	(B.5)
$f(x, y) = f_x(x)f_y(y)$	(B.6)
Principles of Econometrics, 3rd Edition	Slide B-17

B.3.3 A Simple Experiment						
Table B	. 5 A Popu	lation				
1 2	2 3	3 3	4 4	4 4		
					I	
Principles of Econometrics	, 3rd Edition			Slide B-	18	

able	B.6 Pro	bability I	Distribution	of
	Shaded	Y	f(y)	
	No	0	0.6	
	Yes	1	0.4	

Table B. 7	Proba	bility Distributi	on of <i>X</i>
X	C	f(x)	
1		0.1	
2	2	0.2	
3	;	0.3	
4	Ļ	0.4	

 _
 _
-

Table B.	8 Joint Pr	obability F	Function f	(\mathbf{x}, \mathbf{y})
		x		
у	1	2	3	4
0	0	0.1	0.2	0.3
1	0.1	0.1	0.1	0.1

Principles of Econometrics, 3rd Edition

B.4.1 Mean, median and mode • For a continuous random variable the expected value is: $\mu = E[X] = \int_{-\infty}^{\infty} xf(x)dx$ The mean has a flaw as a measure of the center of a probability distribution in that it can be pulled by extreme values.

rinciples of Econometrics, 3rd Edition

Slide B-23

B.4.1 Mean, median and mode

• For a continuous distribution the **median** of *X* is the value *m* such that

$$P(X > m) = P(X < m) = .5$$

- In symmetric distributions, like the familiar "bell-shaped curve" of the normal distribution, the mean and median are equal.
- The **mode** is the value of *X* at which the *pdf* is highest.

Principles of Econometrics, 3rd Edition

Slide B-24

B.4.2 Expected values of functions of a random variable					
	E[aX+b] = aE[X]+b	(B.11)			
	$E\left[g_1(X)+g_2(X)\right]=E\left[g_1(X)\right]+E\left[g_2(X)\right]$	(B.12)			
 The variance of a discrete or continuous random variable X is the expected value of g(X) = [X - E(X)]² 					
Princip	les of Econometrics, 3rd Edition	Slide B-26			

B.4.2 Expected values of functions of a random variable

- The variance of a random variable is important in characterizing the scale of measurement, and the spread of the probability distribution.
- Algebraically, letting $E(X) = \mu$,

$$\operatorname{var}(X) = \sigma^2 = E[X - \mu]^2 = E[X^2] - \mu^2$$

Principles of Econometrics, 3rd Edition

Slide B-27

(B.13)

10

B.4.3 Expected values of several random

 $\operatorname{var}[aX + bY] = a^2 \operatorname{var}(X) + b^2 \operatorname{var}(Y) + 2ab \operatorname{cov}(X,Y) \quad (B.21)$

(B.22)

(B.23)

Slide B-35

 $\operatorname{var}[X+Y] = \operatorname{var}(X) + \operatorname{var}(Y) + 2\operatorname{cov}(X,Y)$

 $\operatorname{var}[X - Y] = \operatorname{var}(X) + \operatorname{var}(Y) - 2\operatorname{cov}(X, Y)$

variables

• If *a* and *b* are constants then:

ciples of Econometrics, 3rd Edition

B.5 Some Important Probability Distributions

B.5.1 The Normal Distribution

• A **standard normal random variable** is one that has a normal probability density function with mean 0 and variance 1.

$$Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$$

(B.27)

Slide B-41

• The *cdf* for the standardized normal variable Z is $\Phi(z) = P(Z \le z).$

Principles of Econometrics, 3rd Edition

B.5.3 The t-Distribution

A "t" random variable (no upper case) is formed by dividing a standard normal random variable Z ~ N(0,1) by the square root of an *independent* chi-square random variable, V ~ χ²_(m), that has been divided by its degrees of freedom m.

$$t = \frac{Z}{\sqrt{V/m}} \sim t_{(m)} \tag{B.34}$$

Slide B-46

Principles of Econometrics, 3rd Edition

B.5.4 The F-Distribution

• An *F* random variable is formed by the ratio of two independent chisquare random variables that have been divided by their degrees of freedom.

$$F = \frac{V_1/m_1}{V_2/m_2} \sim F_{(m_1,m_2)}$$
(B.35)

Slide B-48

Principles of Econometrics, 3rd Edition

16

nciples of Econometrics, 3rd Edition

Slide B-50