The Simple Linear Regression Model: Specification and Estimation

Prepared by Vera Tabakova, East Carolina University

Chapter 2: The Simple Regression Model

- 2.1 An Economic Model
- 2.2 An Econometric Model
- 2.3 Estimating the Regression Parameters
- 2.4 Assessing the Least Squares Estimators
- 2.5 The Gauss-Markov Theorem
- 2.6 The Probability Distributions of the Least Squares Estimators
- 2.7 Estimating the Variance of the Error Term

Slide 2-2

rinciples of Econometrics, 3rd Edition

Assumptions of the Simple Linear Regression Model – I

The mean value of *y*, for each value of *x*, is given by the *linear regression*

$$E(y \mid x) = \beta_1 + \beta_2 x$$

Principles of Econometrics, 3rd Edition

Assumptions of the Simple Linear Regression Model – I

For each value of *x*, the values of *y* are distributed about their mean value, following probability distributions that all have the same variance,

 $\operatorname{var}(y \mid x) = \sigma^2$

rinciples of Econometrics, 3rd Edition

Slide 2-10

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model – I

The sample values of *y* are all *uncorrelated*, and have zero *covariance*, implying that there is no linear association among them,

 $\operatorname{cov}(y_i, y_j) = 0$

This assumption can be made stronger by assuming that the values of *y* are all statistically independent.

rinciples of Econometrics, 3rd Edition

Slide 2-11

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model – I

The variable *x* is not random, and must take at least two different values.

Principles of Econometrics, 3rd Edition

Assumptions of the Simple Linear Regression Model – I

(*optional*) The values of *y* are *normally distributed* about their mean for each value of *x*,

$$y \sim N \Big[\beta_1 + \beta_2 x, \sigma^2 \Big]$$

Slide 2-13

rinciples of Econometrics, 3rd Edition

The expected value of the error term, given *x*, is

$$E(e \mid x) = E(y \mid x) - \beta_1 - \beta_2 x = 0$$

The mean value of the error term, given x, is zero.

rinciples of Econometrics, 3rd Edition

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model – II

SR1. The value of y, for each value of x, is

 $y = \beta_1 + \beta_2 x + e$

rinciples of Econometrics, 3rd Edition

Slide 2-18

Assumptions of the Simple Linear Regression Model – II

SR2. The expected value of the random error e is

E(e) = 0

Which is equivalent to assuming that

 $E(y) = \beta_1 + \beta_2 x$

Slide 2-19

Slide 2-20

Principles of Econometrics, 3rd Edition

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model – II

SR3. The variance of the random error e is

 $var(e) = \sigma^2 = var(y)$

The random variables *y* and *e* have the same variance because they differ only by a constant.

inciples of Econometrics, 3rd Edition

_

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model – II

SR4. The covariance between any pair of random errors, e_i and e_j is

$$\operatorname{cov}(e_i, e_j) = \operatorname{cov}(y_i, y_j) = 0$$

The stronger version of this assumption is that the random errors e are statistically independent, in which case the values of the dependent variable y are also statistically independent. Principles of Econometrics. 3nd Edition Skide 2-21

Assumptions of the Simple Linear Regression Model – II

SR5. The variable *x* is not random, and must take at least two different values.

nciples of Econometrics, 3rd Edition

Slide 2-22

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model – II

SR6. (optional) The values of e are normally distributed about their mean $e \sim N(0,\sigma^2)$

if the values of *y* are normally distributed, and *vice versa*.

inciples of Econometrics, 3rd Edition

Slide 2-23

2.2 An Econometric Model

Assumptions of the Simple Linear Regression Model - II

•SR1. $y = \beta_1 + \beta_2 x + e$

- •SR2. $E(e) = 0 \Leftrightarrow E(y) = \beta_1 + \beta_2 x$ •SR3. $var(e) = \sigma^2 = var(y)$
- •SR4. $\operatorname{cov}(e_i, e_j) = \operatorname{cov}(y_i, y_j) = 0$

•SR5. The variable x is not random, and must take at least two different values.

•SR6. (optional) The values of e are normally distributed about their mean $e \sim N(0, \sigma^2)$

inciples of Econometrics, 3rd Edition

Table 2.1 Food Expenditure an	d Income Data
Observation (household) ex	Food Weekl penditure (\$) income (\$
i .	y ₁ x ₁
1	115.22 3.69
2	135.98 4.39
39	257.95 29.40
40	375.73 33.40
Sun	nmary statistics
Sample mean	283.5735 19.604
Median	264.4800 20.030
Maximum	587.6600 33.400
Minimum	109.7100 3.690 112.7652 6.847

Any other fitted line

$$\hat{y}_i^* = b_1^* + b_2^* x_i$$

• Least squares line has smaller sum of squared residuals

if
$$SSE = \sum_{i=1}^{N} \hat{e}_i^2$$
 and $SSE^* = \sum_{i=1}^{N} \hat{e}_i^{*2}$ then $SSE < SSE^*$

10

- Least squares estimates for the unknown parameters β_1 and β_2 are obtained my minimizing the sum of squares function

$$S(\beta_1,\beta_2) = \sum_{i=1}^{N} (y_i - \beta_1 - \beta_2 x_i)^2$$

Slide 2-31

rinciples of Econometrics, 3rd Edition

2.3 Estimating The Regression Parameters
• 2.3.2 Estimates for the Food Expenditure Function
$b_2 = \frac{\sum(x_i - \overline{x})(y_i - \overline{y})}{\sum(x_i - \overline{x})^2} = \frac{18671.2684}{1828.7876} = 10.2096$
$b_1 = \overline{y} - b_2 \overline{x} = 283.5735 - (10.2096)(19.6048) = 83.4160$
A convenient way to report the values for b_1 and b_2 is to write out the <i>estimated</i> or <i>fitted</i> regression line:
$\hat{y}_i = 83.42 + 10.21x_i$
Principles of Econometrics, 3rd Edition Slide 2-33

- 2.3.3 Interpreting the Estimates
 - The value $b_2 = 10.21$ is an estimate of β_2 , the amount by which weekly expenditure on food per household increases when household weekly income increases by \$100. Thus, we estimate that if income goes up by \$100, expected weekly expenditure on food will increase by approximately \$10.21.
 - Strictly speaking, the intercept estimate b₁ = 83.42 is an estimate of the weekly food expenditure on food for a household with zero income.

rinciples of Econometrics, 3rd Edition

2.3 Estimating The Regression Parameters

2.3.3a Elasticities

• Income elasticity is a useful way to characterize the responsiveness of consumer expenditure to changes in income. The elasticity of a variable *y* with respect to another variable *x* is

 $\varepsilon = \frac{\text{percentage change in } y}{\text{percentage change in } x} = \frac{\Delta y / y}{\Delta x / x} = \frac{\Delta y}{\Delta x} \frac{x}{y}$

• In the linear economic model given by (2.1) we have shown that

 $\beta_2 = \frac{\Delta E(y)}{\Delta x}$

Principles of Econometrics, 3rd Edition

Slide 2-36

- The elasticity of mean expenditure with respect to income is

 $\varepsilon = \frac{\Delta E(y) / E(y)}{\Delta x / x} = \frac{\Delta E(y)}{\Delta x} \cdot \frac{x}{E(y)} = \beta_2 \cdot \frac{x}{E(y)}$ (2.9)

• A frequently used alternative is to calculate the elasticity at the "point of the means" because it is a representative point on the regression line.

$$\hat{\varepsilon} = b_2 \frac{\overline{x}}{\overline{y}} = 10.21 \times \frac{19.60}{283.57} = .71$$

Slide 2-37

Slide 2-38

Principles of Econometrics, 3rd Edition

2.3 Estimating The Regression Parameters

- 2.3.3b Prediction
 - Suppose that we wanted to predict weekly food expenditure for a household with a weekly income of \$2000. This prediction is carried out by substituting x = 20 into our estimated equation to obtain

 $\hat{y}_i = 83.42 + 10.21x_i = 83.42 + 10.21(20) = 287.61$

• We *predict* that a household with a weekly income of \$2000 will spend \$287.61 per week on food.

inciples of Econometrics, 3rd Edition

eated Sampling		
Table 2.2 E	stimates from 10 Samples	
Sample	b_1	b_2
1	131.69	6.48
2	57.25	10.88
3	103.91	8.14
4	46.50	11.90
5	84.23	9.29
6	26.63	13.55
7	64.21	10.93
8	79.66	9.76
9	97.30	8.05
10	95.96	7.77

2.4 Assessing the Least Squares Estimators

- 2.4.4 The Variances and Covariances of b_1 and b_2
- The *larger* the variance term σ^2 , the *greater* the uncertainty there is in the statistical model, and the *larger* the variances and covariance of the least squares estimators.
- The *larger* the sum of squares, $\sum (x_i \overline{x})^2$, the *smaller* the variances of the least squares estimators and the more *precisely* we can estimate the unknown parameters.
- The larger the sample size *N*, the *smaller* the variances and covariance of the least squares estimators.
- The larger this term $\sum x_i^2$ is, the larger the variance of the least squares estimator b_1 .
- The absolute magnitude of the covariance *increases* the larger in magnitude is the sample mean \overline{x} , and the covariance has a *sign* opposite to that of \overline{x} .

Principles of Econometrics, 3rd Edition

Slide 2-46

2.5 The Gauss-Markov Theorem

Gauss-Markov Theorem: Under the assumptions SR1-SR5 of the linear regression model, the estimators b_1 and b_2 have the smallest variance of all linear and unbiased estimators of b_1 and b_2 . They are the **Best Linear Unbiased Estimators (BLUE)** of b_1 and b_2

Principles of Econometrics, 3rd Edition

2.5 The Gauss-Markov Theorem

- The estimators b₁ and b₂ are "best" when compared to similar estimators, those which are linear and unbiased. The Theorem does *not* say that b₁ and b₂ are the best of all *possible* estimators.
- 2. The estimators b₁ and b₂ are best within their class because they have the minimum variance. When comparing two linear and unbiased estimators, we *always* want to use the one with the smaller variance, since that estimation rule gives us the higher probability of obtaining an estimate that is close to the true parameter value.
- In order for the Gauss-Markov Theorem to hold, assumptions SR1-SR5 must be true. If any of these assumptions are *not* true, then b₁ and b₂ are *not* the best linear unbiased estimators of β₁ and β₂.

rinciples of Econometrics, 3rd Edition

Slide 2-49

2.5 The Gauss-Markov Theorem

- The Gauss-Markov Theorem does not depend on the assumption of normality (assumption SR6).
- 5. In the simple linear regression model, if we want to use a linear and unbiased estimator, then we have to do no more searching. The estimators b_1 and b_2 are the ones to use. This explains why we are studying these estimators and why they are so widely used in research, not only in economics but in all social and physical sciences as well.
- 6. The Gauss-Markov theorem applies to the least squares estimators. It *does not* apply to the least squares *estimates* from a single sample.

inciples of Econometrics. 3rd Edition

2.7 Estimating the Variance of the Error Term

The variance of the random error e_i is

 $var(e_i) = \sigma^2 = E[e_i - E(e_i)]^2 = E(e_i^2)$

if the assumption $E(e_i) = 0$ is correct.

Since the "expectation" is an average value we might consider estimating σ^2 as the average of the squared errors, $\sum e^2$

Slide 2-52

 $\hat{\sigma}^2 = \frac{\sum e_i^2}{N}$

Recall that the random errors are

 $e_i = y_i - \beta_1 - \beta_2 x_i$

nciples of Econometrics, 3rd Edition

	zeuse squares	Residuals	
x	у	ŷ	$\hat{e} = y$ -
3.69	115.22	121.09	-5.87
4.39	135.98	128.24	7.7
4.75	119.34	131.91	-12.5
6.03	114.96	144.98	-30.0
2.47	187.05	210.73	-23.68

	Keywords	
 assumptions asymptotic B.L.U.E. biased estimator degrees of freedom dependent variable deviation from the mean form economic model elasticity Gauss-Markov Theorem heteroskedastic 	 least squares estimates least squares 	 sampling procession scatter diagram simple linear regression function specification error unbiased estimator

Chapter 2 Appendices

- Appendix 2A Derivation of the least squares estimates
- Appendix 2B Deviation from the mean form of b_2
- Appendix 2C b₂ is a linear estimator
- Appendix 2D Derivation of Theoretical Expression for b₂
- Appendix 2E Deriving the variance of b₂
- Appendix 2F Proof of the Gauss-Markov Theorem

Slide 2-61

ciples of Econometrics, 3rd Edition

Appendix 2A Derivation of the least squares estimation	rtes
$2\left[\sum y_i - Nb_1 - (\sum x_i)b_2\right] = 0$	
$2\left[\sum x_i y_i - (\sum x_i)b_1 - (\sum x_i^2)b_2\right] = 0$ $Nb_1 + (\sum x_i)b_2 = \sum y_i$	(2A.3)
$(\sum x_i)b_1 + (\sum x_i^2)b_2 = \sum x_i y_i$	(2A.4)
$b_{2} = \frac{N \sum x_{i} y_{i} - \sum x_{i} \sum y_{i}}{N \sum x_{i}^{2} - (\sum x_{i})^{2}}$ Principles of Econometrics, 3rd Edition	(2A.5) Slide 2-64

Appendix 2B Deviation From The Mean Form of b ₂	
$\sum (x_i - \overline{x})^2 = \sum x_i^2 - 2\overline{x} \sum x_i + N \overline{x}^2 = \sum x_i^2 - 2\overline{x} \left(N \frac{1}{N} \sum x_i \right) + N \overline{x}$ $= \sum x_i^2 - 2N \overline{x}^2 + N \overline{x}^2 = \sum x_i^2 - N \overline{x}^2$	2 (2B.1)
$\sum (x_i - \bar{x})^2 = \sum x_i^2 - N \bar{x}^2 = \sum x_i^2 - \bar{x} \sum x_i = \sum x_i^2 - \frac{(\sum x_i)^2}{N}$	(2B.2)
$\sum (x_i - \overline{x})(y_i - \overline{y}) = \sum x_i y_i - N \overline{x} \overline{y} = \sum x_i y_i - \frac{\sum x_i \sum y_i}{N}$	(2B.3)
Principles of Econometrics, 3rd Edition	Slide 2-65

Appendix 2E Deriving the Variance of b_2 $\sigma^2 = \operatorname{var}(e_i) = E[e_i - E(e_i)]^2 = E[e_i - 0]^2 = E(e_i^2)$ $\operatorname{cov}(e_i, e_j) = E[(e_i - E(e_i))(e_j - E(e_j))] = E(e_i e_j) = 0$ $\sum w_i^2 = \sum \left[\frac{(x_i - \overline{x})^2}{\{\sum (x_i - \overline{x})^2\}^2} \right] = \frac{\sum (x_i - \overline{x})^2}{\{\sum (x_i - \overline{x})^2\}^2} = \frac{1}{\sum (x_i - \overline{x})^2}$ $\operatorname{var}(aX + bY) = a^2 \operatorname{var}(X) + b^2 \operatorname{var}(Y) + 2ab \operatorname{cov}(X, Y)$ Principles of Econometrics, 3nt Edition Sub 2.73

Appendix 2E Deriving the Variance of <i>b</i> ₂
$\operatorname{var}(b_2) = \operatorname{var}(\beta_2 + \sum w_i e_i)$ [since β_2 is a constant]
$= \sum w_i^2 \operatorname{var}(e_i) + \sum_{i \neq j} w_i w_j \operatorname{cov}(e_i, e_j) \qquad \text{[generalizing the variance rule]}$
$= \sum w_i^2 \operatorname{var}(e_i) \qquad [\operatorname{using } \operatorname{cov}(e_i, e_j) = 0]$
$=\sigma^2 \sum w_i^2 \qquad \qquad$
$=\frac{\sigma^2}{\sum (x_i - \overline{x})^2}$
Principles of Econometrics, 3rd Edition Slide 2-74

Appendix 2F Proof of the Gauss-Markov Theorem

- Let $b_2^* = \sum k_i y_i$ be any other linear estimator of β_2 .
- Suppose that $k_i = w_i + c_i$.

 $b_2^* = \sum k_i y_i = \sum (w_i + c_i) y_i = \sum (w_i + c_i) (\beta_1 + \beta_2 x_i + e_i)$

 $= \sum (w_i + c_i)\beta_1 + \sum (w_i + c_i)\beta_2 x_i + \sum (w_i + c_i)e_i$

 $=\beta_1\sum w_i+\beta_1\sum c_i+\beta_2\sum w_ix_i+\beta_2\sum c_ix_i+\sum (w_i+c_i)e_i$

 $=\beta_1\sum c_i+\beta_2+\beta_2\sum c_ix_i+\sum (w_i+c_i)e_i$

Principles of Econometrics, 3rd Edition

Slide 2-75

(2F.1)

Appendix 2F Proof of the Gauss-Markov Theor	rem
$E(b_2^*) = \beta_1 \sum c_i + \beta_2 + \beta_2 \sum c_i x_i + \sum (w_i + c_i) E(e_i)$ $= \beta_1 \sum c_i + \beta_2 + \beta_2 \sum c_i x_i$	(2F.2)
$\sum c_i = 0$ and $\sum c_i x_i = 0$	(2F.3)
$b_{2}^{*} = \sum k_{i} y_{i} = \beta_{2} + \sum (w_{i} + c_{i}) e_{i}$	(2F.4)
inciples of Econometrics, 3rd Edition	Slide 2-76

