Prediction, Goodness-of-Fit, and Modeling Issues	
Chapter 4	
Prepared by Vera Tabakova, East Carolina University	
Chapter 4:	
Prediction, Goodness-of-Fit, and Modeling Issues	
• 4.1 Least Squares Prediction	
■ 4.2 Measuring Goodness-of-Fit	
■ 4.3 Modeling Issues	
■ 4.4 Log-Linear Models	
Principles of Econometrics, 3rd Edition Slide 4-2	
	1
4.1 Least Squares Prediction	
$y_0 = \beta_1 + \beta_2 x_0 + e_0 \tag{4.1}$	
where e_0 is a random error. We assume that $E(y_0) = \beta_1 + \beta_2 x_0$ and $E(e_0) = 0$. We also assume that $var(e_0) = \sigma^2$ and	
$cov(e_0, e_i) = 0$ $i = 1, 2,, N$	
$\hat{y}_0 = b_1 + b_2 x_0 \tag{4.2}$	
Principles of Econometrics, 3rd Edition Slide 4-3	

4.1 Least Squares Prediction

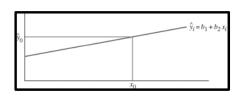


Figure 4.1 A point prediction

Principles of Econometrics, 3rd Edition

Slida A A

4.1 Least Squares Prediction

$$f = y_0 - \hat{y}_0 = (\beta_1 + \beta_2 x_0 + e_0) - (b_1 + b_2 x_0)$$
(4.3)

$$E(f) = \beta_1 + \beta_2 x_0 + E(e_0) - [E(b_1) + E(b_2) x_0]$$
$$= \beta_1 + \beta_2 x_0 + 0 - [\beta_1 + \beta_2 x_0] = 0$$

$$var(f) = \sigma^{2} \left[1 + \frac{1}{N} + \frac{(x_{0} - \overline{x})^{2}}{\sum (x_{i} - \overline{x})^{2}} \right]$$
(4.4)

Principles of Econometrics, 3rd Edition

Slide 4-

4.1 Least Squares Prediction

The variance of the forecast error is smaller when

- i. the overall uncertainty in the model is smaller, as measured by the variance of the random errors ;
- ii. the sample size N is larger;
- iii. the variation in the explanatory variable is larger; and
- iv. the value of is small.

Principles of Econometrics, 3rd Edition

4.1 Least Squares Prediction

$$\widehat{\operatorname{var}(f)} = \hat{\sigma}^2 \left[1 + \frac{1}{N} + \frac{(x_0 - \overline{x})^2}{\sum (x_i - \overline{x})^2} \right]$$

$$\operatorname{se}(f) = \sqrt{\operatorname{var}(f)} \tag{4.5}$$

$$\hat{y}_0 \pm t_c \operatorname{se}(f) \tag{4.6}$$

Principles of Econometrics 3rd Edition

Slida 4.7

4.1 Least Squares Prediction

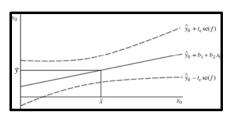


Figure 4.2 Point and interval prediction

Principles of Econometrics, 3rd Edition

Slide 4-

4.1.1 Prediction in the Food Expenditure Model

 $\hat{y}_0 = b_1 + b_2 x_0 = 83.4160 + 10.2096(20) = 287.6089$

$$\widehat{\text{var}(f)} = \widehat{\sigma}^2 \left[1 + \frac{1}{N} + \frac{(x_0 - \overline{x})^2}{\sum (x_i - \overline{x})^2} \right]$$

$$= \widehat{\sigma}^2 + \frac{\widehat{\sigma}^2}{N} + (x_0 - \overline{x})^2 \frac{\widehat{\sigma}^2}{\sum (x_i - \overline{x})^2}$$

$$= \widehat{\sigma}^2 + \frac{\widehat{\sigma}^2}{N} + (x_0 - \overline{x})^2 \widehat{\text{var}(b_2)}$$

 $\hat{y}_0 \pm t_c \operatorname{se}(f) = 287.6069 \pm 2.0244(90.6328) = [104.1323, 471.0854]$

Principles of Econometrics, 3rd Edition

4.2 Measuring Goodness-of-Fit

$$y_i = \beta_1 + \beta_2 x_i + e_i \tag{4.7}$$

$$y_i = E(y_i) + e_i \tag{4.8}$$

$$y_i = \hat{y}_i + \hat{e}_i \tag{4.9}$$

$$y_i - \overline{y} = (\hat{y}_i - \overline{y}) + \hat{e}_i \tag{4.10}$$

Principles of Econometrics, 3rd Edition

4.2 Measuring Goodness-of-Fit

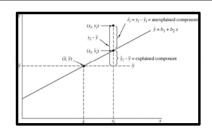


Figure 4.3 Explained and unexplained components of \boldsymbol{y}_i

Principles of Econometries 3rd Edition

4.2 Measuring Goodness-of-Fit

$$\hat{\sigma}_{y}^{2} = \frac{\sum (y_{i} - \overline{y})^{2}}{N - 1}$$

$$\sum (y_i - \overline{y})^2 = \sum (\hat{y}_i - \overline{y})^2 + \sum \hat{e}_i^2$$
(4.11)

Principles of Econometrics, 3rd Edition

4.2 Measuring Goodness-of-Fit

- $\sum (y_i \bar{y})^2 = \text{total sum of squares} = SST$: a measure of *total variation* in y about the sample mean.
- $\sum (\hat{y}_i \bar{y})^2 = \text{sum of squares due to the regression} = SSR$: that part of total variation in y, about the sample mean, that is explained by, or due to, the regression. Also known as the "explained sum of squares."
- Σe²_i = sum of squares due to error = SSE: that part of total variation in y about its mean that is not explained by the regression. Also known as the unexplained sum of squares, the residual sum of squares, or the sum of squared errors.
- SST = SSR + SSE

Principles of Econometrics, 3rd Edition

CI: J. 4 12

4.2 Measuring Goodness-of-Fit

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST} \tag{4.12}$$

■ The closer R^2 is to one, the closer the sample values y_i are to the fitted regression equation $\hat{y}_i = b_1 + b_2 x_i$. If $R^2 = 1$, then all the sample data fall exactly on the fitted least squares line, so SSE = 0, and the model fits the data "perfectly." If the sample data for y and x are uncorrelated and show no linear association, then the least squares fitted line is "horizontal," so that SSR = 0 and $R^2 = 0$.

Principles of Econometrics, 3rd Edition

Slide 4-14

4.2.1 Correlation Analysis

$$\rho_{xy} = \frac{\text{cov}(x, y)}{\sqrt{\text{var}(x)}\sqrt{\text{var}(y)}} = \frac{\sigma_{xy}}{\sigma_x \sigma_y}$$
(4.13)

$$r_{xy} = \frac{\hat{\sigma}_{xy}}{\hat{\sigma}_x \hat{\sigma}_y} \tag{4.14}$$

$$\hat{\sigma}_{xy} = \sum_{i} (x_i - \overline{x})(y_i - \overline{y}) / (N - 1)$$

$$\hat{\sigma}_x = \sqrt{\sum (x_i - \overline{x})^2 / (N - 1)}$$
(4.15)

$$\hat{\sigma}_{y} = \sqrt{\sum (y_{i} - \overline{y})^{2} / (N - 1)}$$

rinciples of Econometrics, 3rd Edition

4.2.2 Correlation Analysis and R2

$$r_{xy}^2 = R^2$$

$$R^2 = r_{y\hat{y}}^2$$

 R^2 measures the linear association, or goodness-of-fit, between the sample data and their predicted values. Consequently R^2 is sometimes called a measure of "goodness-of-fit."

Principles of Econometrics, 3rd Edition

Slide 4-16

4.2.3 The Food Expenditure Example

$$SST = \sum (y_i - \overline{y})^2 = 495132.160$$

$$SSE = \sum (y_i - \hat{y}_i)^2 = \sum \hat{e}_i^2 = 304505.176$$

$$R^2 = 1 - \frac{SSE}{SST} = 1 - \frac{304505.176}{495132.160} = .385$$

$$r_{xy} = \frac{\hat{\sigma}_{xy}}{\hat{\sigma}_x \hat{\sigma}_y} = \frac{478.75}{(6.848)(112.675)} = .62$$

Principles of Econometrics, 3rd Edition

Slide 4-

4.2.4 Reporting the Results

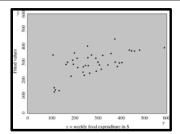


Figure **4.4** Plot of predicted y, \hat{y} against y

Principles of Econometrics, 3rd Edition

4.2.4 Reporting the Results

- FOOD_EXP = weekly food expenditure by a household of size 3, in dollars
- INCOME = weekly household income, in \$100 units

FOOD_EXP =
$$83.42 + 10.21$$
 INCOME $R^2 = .385$
(se) $(43.41)^* (2.09)^{***}$

- * indicates significant at the 10% level
- ** indicates significant at the 5% level
- *** indicates significant at the 1% level

Principles of Econometrics, 3rd Edition

Slide 4-19

4.3 Modeling Issues

- 4.3.1 The Effects of Scaling the Data
- Changing the scale of x:

$$y = \beta_1 + \beta_2 x + e = \beta_1 + (c\beta_2)(x/c) + e = \beta_1 + \beta_2^* x^* + e$$

where $\beta_2^* = c\beta_2$ and $x^* = x/c$

• Changing the scale of y:

$$y/c = (\beta_1/c) + (\beta_2/c)x + (e/c)$$
 or $y^* = \beta_1^* + \beta_2^*x + e^*$

Principles of Econometrics, 3rd Edition

Slide 4-20

4.3.2 Choosing a Functional Form

Variable transformations:

- Power: if x is a variable then x^p means raising the variable to the power p; examples
 are quadratic (x²) and cubic (x³) transformations.
- The natural logarithm: if x is a variable then its natural logarithm is ln(x).
- The reciprocal: if x is a variable then its reciprocal is 1/x.

Principles of Econometrics, 3rd Edition

4.3.2 Choosing a Functional Form

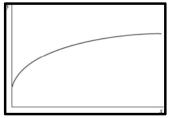


Figure 4.5 A nonlinear relationship between food expenditure and income

nciples of Econometrics, 3rd Edition

Slide 4-22

4.3.2 Choosing a Functional Form

■ The log-log model

 $\ln(y) = \beta_1 + \beta_2 \ln(x)$

The parameter β is the elasticity of y with respect to x.

■ The log-linear model

 $\ln(y_i) = \beta_1 + \beta_2 x_i$

A one-unit increase in x leads to (approximately) a 100 β_2 percent change in y.

■ The linear-log model

$$y = \beta_1 + \beta_2 \ln(x)$$
 or $\frac{\Delta y}{100(\Delta x/x)} = \frac{\beta_2}{100}$
A 1% increase in x leads to a $\beta_2/100$ unit change in y.

Slide 4-23

4.3.3 The Food Expenditure Model

■ The reciprocal model is

$$FOOD_EXP = \beta_1 + \beta_2 \frac{1}{INCOME} + e$$

■ The linear-log model is

 $FOOD_EXP = \beta_1 + \beta_2 \ln(INCOME) + e$

rinciples of Econometrics, 3rd Edition

4.3.3 The Food Expenditure Model

Remark: Given this array of models, that involve different transformations of the dependent and independent variables, and some of which have similar shapes, what are some guidelines for choosing a functional form?

- Choose a shape that is consistent with what economic theory tells us about the relationship.
- Choose a shape that is sufficiently flexible to "fit" the data
- Choose a shape so that assumptions SR1-SR6 are satisfied, ensuring that the least squares estimators have the desirable properties described in Chapters 2 and 3.

Principles of Econometrics, 3rd Edition

Slide 4-25

4.3.4 Are the Regression Errors Normally Distributed?

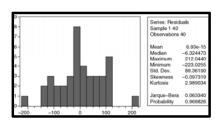


Figure 4.6 EViews output: residuals histogram and summary statistics for food expenditure example

Principles of Econometrics, 3rd Edition

Slide 4-

4.3.4 Are the Regression Errors Normally Distributed?

• The Jarque-Bera statistic is given by

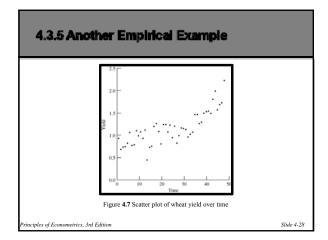
$$JB = \frac{N}{6} \left(S^2 + \frac{\left(K - 3\right)^2}{4} \right)$$

where N is the sample size, S is skewness, and K is kurtosis.

■ In the food expenditure example

$$JB = \frac{40}{6} \left(-.097^2 + \frac{(2.99 - 3)^2}{4} \right) = .063$$

Principles of Econometrics, 3rd Edition



4.3.5 Another Empirical Example

 $YIELD_{t} = \beta_{1} + \beta_{2}TIME_{t} + e_{t}$

 $\widehat{YIELD}_{t} = .638 + .0210 \, TIME_{t}$ $R^{2} = .649$ (se) (.064) (.0022)

Principles of Econometrics, 3rd Edition

Slide 4-29

4.3.5 Another Empirical Example

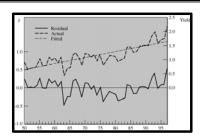


Figure 4.8 Predicted, actual and residual values from straight line

Principles of Econometrics, 3rd Edition

Figure 4.9 Bar chart of residuals from straight line

Principles of Econometrics, 3rd Edition

Slide 4-31

4.3.5 Another Empirical Example

 $YIELD_{t} = \beta_{1} + \beta_{2}TIME_{t}^{3} + e_{t}$

 $TIMECUBE = TIME^3/1000000$

 $\widehat{YIELD_t} = 0.874 + 9.68 \, TIMECUBE_t$ $R^2 = 0.751$ (se) (.036) (.082)

Principles of Econometrics, 3rd Edition

Slide 4-32

4.3.5 Another Empirical Example

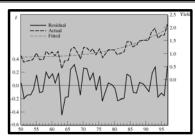


Figure 4.10 Fitted, actual and residual values from equation with cubic term

Principles of Econometrics, 3rd Edition

4.4 Log-Linear Models

■ 4.4.1 The Growth Model

$$\ln(YIELD_t) = \ln(YIELD_0) + \ln(1+g)t$$
$$= \beta_1 + \beta_2 t$$

$$\widehat{\ln(YIELD_t)} = -.3434 + .0178t$$
(se) (.0584) (.0021)

Principles of Econometrics, 3rd Edition

CI: 1 . 4 24

4.4 Log-Linear Models

■ 4.4.2 A Wage Equation

$$\ln(WAGE) = \ln(WAGE_0) + \ln(1+r)EDUC$$
$$= \beta_1 + \beta_2 EDUC$$

$$\widehat{\ln(WAGE)} = .7884 + .1038 \times EDUC$$
(se) (.0849) (.0063)

Principles of Econometrics, 3rd Edition

Slide 4-3

4.4 Log-Linear Models

• 4.4.3 Prediction in the Log-Linear Model

$$\hat{y}_n = \exp\left(\widehat{\ln(y)}\right) = \exp(b_1 + b_2 x)$$

$$\hat{y}_c = \widehat{E(y)} = \exp(b_1 + b_2 x + \hat{\sigma}^2/2) = \hat{y}_n e^{\hat{\sigma}^2/2}$$

$$\overline{\ln(WAGE)}$$
 = .7884 + .1038×EDUC = .7884 + .1038×12 = 2.0335

$$\hat{y}_c = \widehat{E(y)} = \hat{y}_n e^{\hat{\sigma}^2/2} = 7.6408 \times 1.1276 = 8.6161$$

Principles of Econometrics, 3rd Edition

4.4 Log-Linear Models

■ 4.4.4 A Generalized R² Measure

$$R_g^2 = \left[\operatorname{corr}(y, \hat{y})\right]^2 = r_{y, \hat{y}}^2$$

$$R_g^2 = \left[\text{corr}(y, \hat{y}_c)\right]^2 = .4739^2 = .2246$$

 R^2 values tend to be small with microeconomic, cross-sectional data, because the variations in individual behavior are difficult to fully explain.

nciples of Econometrics, 3rd Edition

Slide 4-37

4.4 Log-Linear Models

• 4.4.5 Prediction Intervals in the Log-Linear Model

$$\left[\exp\left(\widehat{\ln(y)} - t_c \operatorname{se}(f)\right), \exp\left(\widehat{\ln(y)} + t_c \operatorname{se}(f)\right)\right]$$

 $\left[\exp(2.0335-1.96\times.4905), \exp(2.0335+1.96\times.4905)\right] = \left[2.9184,20.0046\right]$

Slide 4-38

Keywords

- coefficient of determination
- correlation
- data scale
- forecast error
- forecast standard
- functional form
- goodness-of-fit
- growth model
- Jarque-Bera test kurtosis
- least squares predictor

- linear relationship
- linear-log model log-linear model log-log model log-normal

- distribution
- prediction prediction interval
 R²
- residual
- skewness

ciples of Econometrics, 3rd Edition

Chapter 4 Appendices

- Appendix 4A Development of a Prediction Interval
- Appendix 4B The Sum of Squares Decomposition
- Appendix 4C The Log-Normal Distribution

Principles of Econometrics, 3rd Edition

CI: J. A AO

Appendix 4A Development of a Prediction Interval

$$f = y_0 - \hat{y}_0 = (\beta_1 + \beta_2 x_0 + e_0) - (b_1 + b_2 x_0)$$

$$\operatorname{var}(\hat{y}_0) = \operatorname{var}(b_1 + b_2 x_0) = \operatorname{var}(b_1) + x_0^2 \operatorname{var}(b_2) + 2x_0 \operatorname{cov}(b_1, b_2)$$

$$=\frac{\sigma^2\sum x_i^2}{N\sum \left(x_i-\overline{x}\right)^2}+x_0^2\frac{\sigma^2}{\sum \left(x_i-\overline{x}\right)^2}+2x_0\sigma^2\frac{-\overline{x}}{\sum \left(x_i-\overline{x}\right)^2}$$

Principles of Econometrics, 3rd Edition

Slide 4-4

Appendix 4A Development of a Prediction Interval

$$\begin{split} \operatorname{var} \left(\hat{y}_{0} \right) &= \left[\frac{\sigma^{2} \sum x_{i}^{2}}{N \sum (x_{i} - \overline{x})^{2}} - \left\{ \frac{\sigma^{2} N \overline{x}^{2}}{N \sum (x_{i} - \overline{x})^{2}} \right\} \right] + \left[\frac{\sigma^{2} x_{0}^{2}}{\sum (x_{i} - \overline{x})^{2}} + \frac{\sigma^{2} (-2x_{0} \overline{x})}{\sum (x_{i} - \overline{x})^{2}} + \left\{ \frac{\sigma^{2} N \overline{x}^{2}}{N \sum (x_{i} - \overline{x})^{2}} + \frac{\sigma^{2} (-2x_{0} \overline{x})}{\sum (x_{i} - \overline{x})^{2}} + \frac{\sigma^{2} (-2x_{0} \overline{x})}{\sum (x_{i} - \overline{x})^{2}} + \frac{\sigma^{2} (-2x_{0} \overline{x})}{\sum (x_{i} - \overline{x})^{2}} \right] \\ &= \sigma^{2} \left[\frac{\sum x_{i}^{2} - N \overline{x}^{2}}{N \sum (x_{i} - \overline{x})^{2}} + \frac{(x_{0} - \overline{x})^{2}}{\sum (x_{i} - \overline{x})^{2}} \right] \\ &= \sigma^{2} \left[\frac{1}{N} + \frac{(x_{0} - \overline{x})^{2}}{\sum (x_{i} - \overline{x})^{2}} \right] \end{split}$$

Principles of Econometrics, 3rd Edition

Appendix 4A Development of a Prediction Interval

$$\frac{f}{\sqrt{\operatorname{var}(f)}} \sim N(0,1)$$

$$\widehat{\operatorname{var}(f)} = \widehat{\sigma}^2 \left[1 + \frac{1}{N} + \frac{(x_0 - \overline{x})^2}{\sum (x_i - \overline{x})^2} \right]$$

$$\frac{f}{\sqrt{\operatorname{var}(f)}} = \frac{y_0 - \hat{y}_0}{\operatorname{se}(f)} \sim I_{(N-2)}$$
(4A.1)

$$P(-t_c \le t \le t_c) = 1 - \alpha \tag{4A.2}$$

Principles of Econometrics, 3rd Edition

Slide 4-43

Appendix 4A Development of a Prediction Interval

$$P[-t_c \le \frac{y_0 - \hat{y}_0}{\text{se}(f)} \le t_c] = 1 - \alpha$$

$$P[\hat{y}_0 - t_c se(f)] \le y_0 \le \hat{y}_0 + t_c se(f)] = 1 - \alpha$$

Principles of Econometrics, 3rd Edition

Slide 4-4

Appendix 4B The Sum of Squares Decomposition

$$(y_i - \overline{y})^2 = [(\hat{y}_i - \overline{y}) + \hat{e}_i]^2 = (\hat{y}_i - \overline{y})^2 + \hat{e}_i^2 + 2(\hat{y}_i - \overline{y})\hat{e}_i$$

$$\sum (y_i - \overline{y})^2 = \sum (\hat{y}_i - \overline{y})^2 + \sum \hat{e}_i^2 + 2\sum (\hat{y}_i - \overline{y})\hat{e}_i$$

$$\begin{split} \sum (\hat{y}_i - \overline{y}) \hat{e}_i &= \sum \hat{y}_i \hat{e}_i - \overline{y} \sum \hat{e}_i = \sum (b_1 + b_2 x_i) \hat{e}_i - \overline{y} \sum \hat{e}_i \\ &= b_1 \sum \hat{e}_i + b_2 \sum x_i \hat{e}_i - \overline{y} \sum \hat{e}_i \end{split}$$

Principles of Econometrics, 3rd Edition

Slide 4-4.

Appendix 4B The Sum of Squares Decomposition

$$\sum \hat{e}_{i} = \sum (y_{i} - b_{1} - b_{2}x_{i}) = \sum y_{i} - Nb_{1} - b_{2}\sum x_{i} = 0$$

$$\sum x_{i}\hat{e}_{i} = \sum x_{i}(y_{i} - b_{1} - b_{2}x_{i}) = \sum x_{i}y_{i} - b_{1}\sum x_{i} - b_{2}\sum x_{i}^{2} = 0$$

$$\sum (\hat{y}_i - \overline{y})\hat{e}_i = 0$$

If the model contains an intercept it is guaranteed that SST = SSR + SSE. If, however, the model does not contain an intercept, then $\sum \hat{e}_i \neq 0$ and $SST \neq SSR + SSR$

Principles of Econometrics, 3rd Edition

Slide 4-46

Appendix 4C The Log-Normal Distribution

Suppose that the variable y has a normal distribution, with mean μ and variance σ^2 . If we consider $w=e^x$ then $y=\ln(w)\sim N(\mu,\sigma^2)$ is said to have a **log-normal** distribution.

$$E(w) = e^{\mu + \sigma^2/2}$$

$$\operatorname{var}(w) = e^{2\mu + \sigma^2} \left(e^{\sigma^2} - 1 \right)$$

Principles of Econometrics, 3rd Edition

Slide 4-4

Appendix 4C The Log-Normal Distribution

Given the log-linear model $\ln(y) = \beta_1 + \beta_2 x + e$

If we assume that $e \sim N(0, \sigma^2)$

$$\begin{split} E\left(y_{i}\right) &= E\left(e^{\beta_{1}+\beta_{2}x_{i}+\epsilon_{i}}\right) = E\left(e^{\beta_{1}+\beta_{2}x_{i}}e^{\epsilon_{i}}\right) = \\ e^{\beta_{1}+\beta_{2}x_{i}}E\left(e^{\epsilon_{i}}\right) &= e^{\beta_{1}+\beta_{2}x_{i}}e^{\sigma^{2}/2} = e^{\beta_{1}+\beta_{2}x_{i}+\sigma^{2}/2} \end{split}$$

$$\widehat{E(y_i)} = e^{b_1 + b_2 x_i + \hat{\sigma}^2/2}$$

Principles of Econometrics, 3rd Edition

Appendix 4C The Log-Normal Distribution

The growth and wage equations:

$$\beta_2 = \ln(1+r)$$
 and

and
$$r = e^{\beta_2} - 1$$

$$b_2 \sim N(\beta_2, \text{var}(b_2) = \sigma^2 / \sum (x_i - \overline{x})^2)$$

$$E \lceil e^{b_2} \rceil = e^{\beta_2 + \operatorname{var}(b_2)/2}$$

$$\hat{r} = e^{b_2 + \widehat{\operatorname{var}(b_2)}/2} - 1$$

$$\widehat{\operatorname{var}(b_2)} = \hat{\sigma}^2 / \sum (x_i - \overline{x})^2$$

Principles of Econometrics, 3rd Edition