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Which of these reveal the hidden structure of data?

This Photo by Unknown Author is licensed under CC BY-SA-NC

https://www.homeworklib.com/questions/1455781/1-use-appendix-table-iii-to-determine-the
https://creativecommons.org/licenses/by-nc-sa/3.0/
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Why learn representations in lower dimensions?

VISUALIZATION: 
PROJECTING 
DATA POINTS 

ONTO A 2D OR 
3D SPACE CAN 

HELP IN 
IDENTIFYING 
PATTERNS, 

CLUSTERS, OR 
OUTLIERS.

DIMENSIONALITY 
REDUCTION CAN 

SIMPLIFY THE 
DATA AND MAKE 

IT MORE 
MANAGEABLE.

COMPUTATIONAL 
EFFICIENCY, 

ESPECIALLY FOR ML 
ALGORITHMS 

BASED ON 
DISTANCE 

CALCULATIONS 
CAN LEAD TO 

FASTER TRAINING 
AND INFERENCE 

TIMES.

OVERFITTING 
MITIGATION BY 
REDUCING THE 

COMPLEXITY 
OF THE MODEL.

LOWER-
DIMENSIONAL 

REPRESENTATIONS 
CAN BE MORE 

INTERPRETABLE 
WHEN TRYING TO 
UNDERSTAND AND 

COMMUNICATE 
THE RESULTS OF A 

MACHINE 
LEARNING MODEL.

More reasons to learn representations in 
lower dimensions

Data Compression beneficial for storage and transmission of data.

Makes it easier for clustering and classification algorithms to identify 
patterns and group data points.

Anomalies or outliers may become more apparent in lower-dimensional 
space, aiding in the detection of unusual or suspicious data points.

Identifying and retaining the most important features of the data while 
discarding less important or redundant ones can lead to more efficient and 
effective models.

Reduces the impact of noise or random variations in the data, making it 
easier for models to focus on the underlying patterns.
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Training data needs 
grow exponentially 
with dimensions

=> Learning in high 
dimensions is 

intractable

Distances 
become less 
meaningful 
in high 
dimensions

Lellouche, S., & Souris, M. (2019). Distribution of 
distances between elements in a compact set. Stats, 3(1), 
1-15.

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

variance tends to 0 
when n→+∞

Distribution of 
distances for different 

values of space 
dimension n.

http://creativecommons.org/licenses/by/4.0/
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Curse of dimensionality: Hughes phenomenon

Source: Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 
14(1), 55-63.

Principal Component Analysis (PCA)
• Does not require labels – unsupervised
• Data with many (m) features abstracted / condensed into fewer (k) 

principal components (k < m) that are synthetic

m columns

Original Data
n row

s

D

k cols

n row
s

X
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9 Some or all of the slides in this presentation may have been influenced by or adopted from various sources for the sole purpose of teaching students and enhancing their learning experience.

More Intuition

Movies are shot in 3D but 
we watch in 2D without 

much loss of information 
even when dropping the 

3rd dimension.

We listen to music when 
working. But when we 
need to focus, we drop 

the music dimension 
without forgoing much.

Class Survey: Rate these on a scale of 1-5

• Everyone in my team contributes to my learning
• My team provides great insights during discussions
• Each team member creates a positive environment

• Can be replaced by

• My team generates great synergy

Redundancy

Latent intent
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Which of the 4 plots is most likely?

X-axis: DATA 245 Score
Y-axis: DATA 228 Score

Each vector represents 
the scores obtained by 
a student in the MSDA 
program

Scenario 1 Scenario 2

Scenario 3 Scenario 4

If only one subject’s grade is available for 
hiring an RA, what would that subject be?

X-axis: DATA 245 Score
Y-axis: DATA 228 Score

Each vector represents 
the scores obtained by 
a student in the MSDA 
program

Scenario 1 Scenario 2

Scenario 3 Scenario 4

It is the 
variance that 

matters!
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Principal 
Component 

Analysis
Caricature

This Photo by Unknown Author is licensed 

under CC BY-SA

https://commons.wikimedia.org/wiki/File:Barack_Obama_-_Caricature_(5337333337).jpg
https://creativecommons.org/licenses/by-sa/3.0/
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How do we 
capture the 
oddities or unique 
variations in a 
dataset?

Principal Component Analysis (PCA) – A Linear Technique

Originated in: Pearson, K. (1901). On Lines and Planes 
of Closest Fit to Systems of Points in Space. 
Philosophical Magazine, 2, 559-572.

Significant Improvement: Hotelling, H. (1933). Analysis of a 
Complex of Statistical Variables into Principal Components. 
Journal of Educational Psychology, 24(6), 417-441.

First application: Goodall, D. W. (1954). Objective 
methods for the classification of vegetation. III. An 
essay in the use of factor analysis. Australian Journal of 
Botany, 2(3), 304-324.
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Can we use just 
one dimension 
for this 2D 
data?

What’s the 
statistical 
parameter that is 
indicative of the 
direction?
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PCA: Ideas
Capture as much important 
information in a dataset, but 
using fewer features 
(dimensions)

Transform the feature 
space: From correlated 
features to entirely 
uncorrelated, orthogonal, 
synthetic features

Drop least important 
features so generated; 
importance is indicative of 
the variance in the data 
the new feature captures

Result: Original dataset is 
now projected in a fewer 
dimensional space

Keywords: variance; 
orthogonal; relative 
importance

Think: covariance matrix; 
eigen vectors (orthogonal 
for symmetric matrices like 
the covariance matrix); 
eigen values

The notion of variance and correlation

• One variable, Var(x): 
∑!"#
$ "!#"̅ %

% Two Variables, Cov(x,y):
∑!"#
$ ("!#"̅)((!#)()

%

x and y are independent => cov(x,y) = 0; directly correlated => cov(x,y) > 0
inversely correlated => cov(x,y) < 0

Correlation Coefficient = 
*+,(",()

./0 " ../0(()
• Three or more variables, Covariance Matrix:

Cov(x,x) = var(x) Cov(x,y) Cov(x,z)
Cov(y,x) Cov(y,y) = var(y) Cov(y,z)
Cov(z,x) Cov(z,y) Cov(z,z) = var(z)

If the data is 
already mean 
adjusted, what is 
the covariance? 
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21 Some or all of the slides in this presentation may have been influenced by or adopted from various sources for the sole purpose of teaching students and enhancing their learning experience.

Kernel Matrix vs Covariance Matrix

𝒙𝟏
𝒙𝟐
𝒙𝟑

…
𝒙𝒏

XT=
𝒙𝟏 𝒙𝟐 𝒙𝟑 … 𝒙𝒏

X=
< 𝒙𝟏, 
𝒙𝟏>

< 𝒙𝟏, 
𝒙𝟐>

< 𝒙𝟏, 
𝒙𝟑> … < 𝒙𝟏, 

𝒙𝒏>
< 𝒙𝟐, 
𝒙𝟏>

< 𝒙𝟐, 
𝒙𝟐>

… … …
< 𝒙𝟑, 
𝒙𝟏>

… < 𝒙𝟑, 
𝒙𝟑>

… …

… … … … …

< 𝒙𝒏, 
𝒙𝟏>

… … … < 𝒙𝒏, 
𝒙𝒏>

XTX=Kernel Matrix

Corollary: What is XXT ?

Eigenvalues and Eigenvectors
Eigenvalues (λ) are scalar values that represent how a linear transformation 
(represented by a matrix) stretches or compresses space.
For a given eigenvalue, there may be multiple eigenvectors. The set of all 
eigenvectors corresponding to a particular eigenvalue is called the eigenspace.
If A is a square matrix, λ is an eigenvalue of A if there exists a non-zero 
eigenvector v such that Av = λv.
Eigenvectors are non-zero vectors that only change by a scalar factor, λ (direction 
does not change) when a linear transformation, A is applied

Two properties useful for PCA:

• Orthogonality: Eigenvectors corresponding to distinct eigenvalues are 
orthogonal (linearly independent) for symmetric matrices

• Eigenbasis: Eigenvectors can form a basis for a vector space
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23 Some or all of the slides in this presentation may have been influenced by or adopted from various sources for the sole purpose of teaching students and enhancing their learning experience.
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Finding Eigenvalues and Eigenvectors
• Characteristic equation: Determinant of (A - λI) = 0, where A is the 

matrix, λ is the eigenvalue, and I is the identity matrix of the same 
size as A.
• Why? Ax = λx => (Ax – λx) = 0 => (A – λI)x = 0 and by definition, 

eigenvectors are non-zero, so det(A – λI) = 0
• Solve the characteristic equation for λ to find the eigenvalues.
• To find the eigenvectors, for each eigenvalue λ:
• Substitute λ back into the equation (A - λI)v = 0, where v is the 

eigenvector.
• Solve the resulting system of linear equations to find the 

eigenvector v.
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Finding eigenvectors: 2x2 matrix example
• Matrix A: 4 2

3 −1
• Characteristic equation: : 
4 − 𝜆 2
3 −1 − 𝜆 = 0

=> (4 - λ)(-1 - λ) - 6 = 0
𝜆! - 3λ - 10 = 0 => (λ - 5)(λ + 2) = 0 
• Eigenvalues: λ = 5, -2
• Eigenvector for λ = 5:
• (A - 5I)v = 0

• −1 2
3 −6

𝑥
𝑦 = 0

• => -x + 2y = 0 and 3x – 6y = 0
• Both the equations are identical to x 

= 2y
• Solving this system gives many 

eigenvectors such as v = [2, 1].
• Eigenvector for λ = -2:
• (A + 2I)v = 0

• 6 2
3 1

𝑥
𝑦 = 0

• Again, the resulting equations are 
identical to y = -3x
• Many eigenvectors like [1, -3], [2, -6]

Finding eigenvectors: 3x3 symmetric matrix

• Matrix A: 
2
1

1
2

3 3

3
3
20

• Characteristic equation: 

2 − λ
1

1
2 − λ

3 3

3
3
20 − λ

= 0

Expand the determinant using 
cofactor expansion:
Choose a row or column to expand 
along. For this example, let's expand 
along the first row:

(2 - λ) * (submatrix determinant) - 1 * 
(submatrix determinant) + 3 * 
(submatrix determinant) = 0
Evaluate each 2x2 submatrix 
determinant:
(2 - λ)[(2 - λ)(20 - λ) - 9] - 1[(1)(20 - λ) -
9] + 3[(1)(3) - (2 - λ)(3)] 

=> 𝜆& - 25𝜆' + 114λ - 120 = 0
=> (λ - 1)(λ - 5)(λ - 20) = 0
λ = 1, 5, 20
Eigenvectors can be found like before
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What if the 
eigen values 
cannot be 

found or are 
not real 

numbers?

Not Possible for Covariance matrices!

28 Some or all of the slides in this presentation may have been influenced by or adopted from various sources for the sole purpose of teaching students and enhancing their learning experience.

Eigen vectors of a Symmetric Matrix
If all the values in the symmetric matrix (ST = S) are real, then eigen 
values and eigen vectors are real numbers as well.

Eigen vectors of a real symmetric matrix are orthogonal

Spectral decomposition: S = QLQT where Q is an orthogonal matrix

Q’s columns are eigen vectors of S

L is a diagonal matrix of eigen values of S

All the eigen values of a positive definite symmetric matrix are 
positive
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29 Some or all of the slides in this presentation may have been influenced by or adopted from various sources for the sole purpose of teaching students and enhancing their learning experience.

Why are the eigenvalues of the Gram matrices nonnegative?

Let 𝜆 be any eigenvalue of K = 𝑋#𝑋 and the 
corresponding eigen vector, v. Then,

(𝑋#𝑋)𝑣 = 𝜆𝑣
𝑣#𝑋#𝑋𝑣 = 𝑣#𝜆𝑣
𝑋𝑣 # 𝑋𝑣 = 𝜆𝑣#𝑣

𝑋𝑣 # 𝑋𝑣 𝑎𝑛𝑑 𝑣#𝑣 𝑎𝑟𝑒 𝑏𝑜𝑡ℎ 𝑛𝑜𝑟𝑚𝑠
𝑠𝑜 ℎ𝑎𝑣𝑒 𝑡𝑜 𝑏𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑋𝑣
$
= 𝜆 𝑣

$

⇒ 𝜆 > 0

30 Some or all of the slides in this presentation may have been influenced by or adopted from various sources for the sole purpose of teaching students and enhancing their learning experience.

Other interesting 
properties

q The eigenvalues of the 
covariance matrix, 𝑋𝑋( can 
also be similarly proved to be 
> 0

q The Gram matrices XXT and 
XTX share the same nonzero 
eigenvalues (why?).
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Principal Components

• Sort the absolute |eigenvalues|
• PC1: Direction of maximum spread (variance) – the 

direction of the 1st eigenvector corresponding to the 
largest absolute |eigenvalue|

• PC2: 2nd eigenvector direction covering maximum 
residual variation left in the data,  orthogonal to PC1

• PC3 (if the original data has 3+ dimensions): 3rd 
eigenvector direction with maximum spread left in 
data after PC1 and PC2,  orthogonal to PC1 and PC2

• So on and so forth
• Observation: PC1 covers most the spread; PC2 is 

almost redundant
• PC2 can be dropped without losing significant 

information that the data conveys

PC1
PC2

Original Axes

New Axes: 
rotated and 
shifted

Equations of the new axes in terms of the old
• Original features: 𝑥(, 𝑥', 𝑥&, … 𝑥) New uncorrelated PCs: 𝑧(, 𝑧', 𝑧&, … , 𝑧)
• 𝑃𝐶( (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑚𝑜𝑠𝑡 𝑠𝑝𝑟𝑒𝑎𝑑): 𝑧( = 𝑘((𝑥( + 𝑘('𝑥' +⋯+ 𝑘()𝑥)
• 𝒌𝟏𝟏, 𝒌𝟏𝟐, 𝒌𝟏𝟑, … , 𝒌𝟏𝒎 𝑖𝑠 𝑡ℎ𝑒 1𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥
• 𝑃𝐶' (𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 2./ 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟): 𝑧'= 𝑘'(𝑥( + 𝑘''𝑥' +⋯+ 𝑘')𝑥)
• 𝒌𝟐𝟏, 𝒌𝟐𝟐, 𝒌𝟐𝟑, … , 𝒌𝟐𝒎 𝑖𝑠 𝑡ℎ𝑒 2𝑛𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑚𝑎𝑡𝑟𝑖𝑥
• …
• 𝑃𝐶): 𝑧)= 𝑘)(𝑥( + 𝑘)'𝑥' +⋯+ 𝑘))𝑥)
• The PCs capture all of the information in the original features
• Usually, the 1st few PCs capture most of the information; rest are redundant
• If so, keep the 1st few and drop the rest => dimensionality reduction
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PCA: Dimensionality Reduction

Figure By Staticshakedown - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=75715167

• Cattell, Raymond B. (1966). 
"The Scree Test For The 
Number Of Factors". 
Multivariate Behavioral 
Research. 1 (2): 245–276.

• Scree Test: procedure of 
finding statistically significant 
factors

• Y-axis: eigenvalues represent 
the percentage of variance 
explained by each PC

Standardization

Scaling for 
zero mean 
and unit 
variance

Computing the 
Covariance 
Matrix

Joint 
variability of 
features

Eigen 
Decomposition 

Covariance 
Matrix 
Factorization into 
Eigen vectors

Dimensionality 
Reduction 

Based on 
explained 
Variance 

Feature 
Transformation 

Projecting the 
data items to 
the transformed 
feature space

PCA – The Process
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PCA: Implementation
• Data (2 features, 5 observations):
• X = [[1, 2], [2, 3], [4, 5], [5, 7], [8, 9]]

• Standardization: Calculate the mean 
and standard deviation for each 
variable:

• mean_X = np.mean(X, axis=0)
# [4.0, 5.2]
# mean_X1 = (1 + 2 + 4 + 5 + 8) / 5 
= 4.0
# mean_X2 = (2 + 3 + 5 + 7 + 9) / 5 
= 5.2

• std_X = np.std(X, axis=0)
• # [2.44948974 2.56124969]

• Z = (X - mean_X) / std_X

# Standardized data
Z = [[-1.22474487 -1.2493901 ]
[-0.81649658 -0.85895569]
[ 0.         -0.07808688]
[ 0.40824829  0.70278193]
[ 1.63299316  1.48365074]]

Effect of 
Standardization 

of Data
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PCA: Implementation (contd)
• covariance matrix of the standardized data:

Zt = np.transpose(Z)
cov_matrix = np.cov(Zt)

Σ = [[1.25       1.23530488]
[1.23530488 1.25]]

• eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)
Eigenvalues: λ1 = 2.48530488, λ2 = 0.01469512
Eigenvectors: v1 = [0.70710678, 0.70710678], v2 = [-0.70710678, 0.70710678]

• sorted_indices = np.argsort(eigenvalues)[::-1]
• sorted_eigenvectors = eigenvectors[:, sorted_indices]
• Choose the top k (=1, in this example) eigenvectors as principal components:

• principal_component = sorted_eigenvectors[:, 0]  # First PC
principal_component = [0.70710678, 0.70710678]

PCA: Implementation (contd)
• Project the original data onto the selected principal component:

• transformed_data = Z.dot(principal_component)
[-1.74947761 -1.18472366 -0.05521576  0.785617    2.20380004]

• The transformed data now has a single dimension, representing the 
projection of the original data onto the principal component
• This lower-dimensional representation captures the most significant 

variance in the data.
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Relation to Linear Regression

Linear Regression: Minimizing 
Least Squares

PCA: Maximizing the stretch of 
the projection

Both are equivalent due to Pythagoras theorem

Minimizing 
this side 
(least 
square)

Is same as maximizing this side (projection)
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This Photo by Unknown Author is licensed under CC BY-SA

How can we reduce the 
dimensionality of this dataset?

Application of 
PCA

Pendyala, Vishnu S., and Foroozan Sadat Akhavan
Tabatabaii. "Spectral analysis perspective of why 
misinformation containment is still an unsolved 

problem." 2023 IEEE Conference on Artificial 
Intelligence (CAI). IEEE, 2023.

http://tex.stackexchange.com/questions/39974/problem-with-a-very-heavy-eps-image-scatter-plot-too-heavy-as-eps
https://creativecommons.org/licenses/by-sa/3.0/
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Pendyala, Vishnu S., and Foroozan Sadat Akhavan Tabatabaii. "Spectral analysis perspective of why misinformation 
containment is still an unsolved problem." 2023 IEEE Conference on Artificial Intelligence (CAI). IEEE, 2023.

More Interesting Applications of PCA
Source: Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of 
cognitive neuroscience, 3(1), 71-86.

Training Dataset
Eigen Faces from the dataset Average Face

An original face 
image and its 
projection onto 
the face space 
defined by the 
eigenfaces
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Source: Saleh, Mostafa E., A. Baith Mohamed, and A. Abdel Nabi. "Eigenviruses for 
metamorphic virus recognition." IET information security 5.4 (2011): 191-198.

• Eigenviruses are 
vectors that span 
across the most 
important features 
in the sample virus 
files

• Euclidean distance 
used to find the 
nearest neighbor for 
classification 
(recognition) of the 
virus

Other eigen* applications of PCA (contd)

• Speaker recognition and verification: Captures principal components of 
speech signals to create representative "eigenvoices."
• Kuhn, Roland, et al. "Rapid speaker adaptation in eigenvoice 

space." IEEE Transactions on Speech and Audio Processing 8.6 
(2000): 695-707.

• Kwok, J., Mak, B., & Ho, S. (2003). Eigenvoice speaker adaptation via 
composite kernel principal component analysis. Advances in Neural 
Information Processing Systems, 16.

• Hand gesture recognition: principal components from hand images or 
videos to generate "eigenhands."
• Birk, Henrik, Thomas B. Moeslund, and Claus B. Madsen. "Real-time 

recognition of hand alphabet gestures using principal component 
analysis." Proceedings of the Scandinavian conference on image 
analysis. Vol. 1. Proceedings published by various publishers, 1997.
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Other eigen* applications of PCA (contd)

• Gesture recognition in general: Captures principal directions of variation in 
gesture data to create "eigengestures."
• Nakajima, Masato, et al. "Motion prediction based on eigen-gestures." Proc. 

of the 1st First Korea-Japan Joint Workshop on Pattern Recognition. 2006.
• Gawron, Piotr, et al. "Eigengestures for natural human computer interface." 

Man-Machine Interactions 2. Springer Berlin Heidelberg, 2011.
• Texture analysis and synthesis: principal components of texture patterns to 

create "eigentextures.”
• Vasilescu, M. A. O., & Terzopoulos, D. (2004). TensorTextures: Multilinear 

image-based rendering. In ACM SIGGRAPH 2004 Papers (pp. 336-342).
• General image compression and representation: Computes eigenvectors of 

image covariance matrices to form a basis for representing images
• Abadpour, A., & Kasaei, S. (2008). Color PCA eigenimages and their 

application to compression and watermarking. Image and Vision Computing, 
26(7), 878-890.

Principal 
Components 
of Non-linear 
Data

Source: Scholz, M. (2012). Validation 
of nonlinear PCA. Neural processing 
letters, 36(1), 21-30.
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This Photo by Unknown Author is licensed under CC BY-SA

Dimensionality Reduction and Visualization 
of the MNIST handwritten digits dataset

This Photo by Unknown Author is licensed under CC BY

PCA on 
labeled 

MNIST 
handwritten 
digits dataset 

visualized 
using the 1st 

and 2nd 
Principal 

Components

https://www.freesion.com/article/75911400158/
https://creativecommons.org/licenses/by-sa/3.0/
https://oku.edu.mie-u.ac.jp/~okumura/python/mnist.html
https://creativecommons.org/licenses/by/3.0/
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Multidimensional 
scaling

(MDS) on labeled 
MNIST 

handwritten 
digits dataset 

visualized using 
the 1st and 2nd 

Principal 
Components
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MDS is a spectral 
method that 
preserves the pair-
wise distances 
between data items

What is the problem 
with the approach?
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Distances 
become less 
meaningful 
in high 
dimensions

Lellouche, S., & Souris, M. (2019). Distribution of 
distances between elements in a compact set. Stats, 3(1), 
1-15.

Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

variance tends to 0 
when n→+∞

Distribution of 
distances for different 

values of space 
dimension n.

Solution: t-distributed stochastic neighbor 
embedding (t-SNE)

Preserve only the smaller pairwise distances between data items (think 
neighbors within a group)
Good at identifying clusters and anomalies, visualization of very high 
dimensional data

Not good at preserving global distances like PCA does

Handles non-linear relationships among data well

Computation intensive

Stochastic elements: initialization, stochastic gradient descent

Highly configurable via hyperparameters and non-deterministic

http://creativecommons.org/licenses/by/4.0/
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This Photo by Unknown Author is licensed under CC BY-NC

T-SNE on 
labeled 

MNIST 
handwritten 
digits dataset 

visualized 
using the 1st 

and 2nd 
Principal 

Components

T-SNE on 
unlabeled 
MNIST 

handwritten 
digits dataset 

visualized 
using the 1st 

and 2nd 
Principal 

Components

https://afiodorov.github.io/2019/05/27/tsne/
https://creativecommons.org/licenses/by-nc/3.0/
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Isomap 
uses 

Geodesic – 
the 

shortest 
distance 
between 

two points 
on a 

manifold 
surface, 
honoring 
the shape
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Source: https://www.astroml.org/_images/fig_S_manifold_PCA_1.png

PCA vs 
Manifold 
Learning
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Source: Tezuka, Naoya, et al. "Resilience of Wireless Ad Hoc Federated Learning against 
Model Poisoning Attacks." 2022 IEEE 4th International Conference on Trust, Privacy and 
Security in Intelligent Systems, and Applications (TPS-ISA). IEEE, 2022.

Uniform Manifold 
Approximation and 
Projection (UMAP)

• Builds a topological 
representation of data

• Preserves both local and 
global structure

• Based on manifold 
learning, graph theory

• Can capture non-linear 
relationships in the data

• Computationally efficient 
compared to t-SNE

UMAP

t-SNE

PCA

Source: Pendyala, Vishnu, Konduri 
Samhita, and Pendyala, Kriti, 
"Analysis of Multilanguage Regional 
Music Tracks using Representation 
Learning Techniques in Lower 
Dimensions." In 10th International 
Conference On Mathematics And 
Computing ICMC 2024. Springer. 
[Best paper award]
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Many algorithms for non-linear dimensionality reduction

Source: https://en.wikipedia.org/wiki/Nonlinear_dimensionality_reduction#/media/File:Lle_hlle_swissroll.pngCC BY 3.0

Source: Van Der Maaten, L., 
Postma, E., & Van den Herik, J. 
(2009). Dimensionality 
reduction: a comparative. J 
Mach Learn Res, 10(66-71), 
13.

Taxonomy of dimensionality reduction techniques (2009)

More than this now!

https://creativecommons.org/licenses/by/3.0
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Kernel PCA

Increase the dimensions: 
Transform the non-

linear data into higher 
dimensional space

Reduce the 
dimensions: Run 
PCA in higher 

dimensional space

Finding the eigen 
values of the kernel 
matrix is equivalent 
to finding those of 

the covariance matrix

Use the kernel matrix 
in place of covariance 
matrix and compute 

the principal 
components in the 
transformed space

The feature vector x 
is transformed as: 

ai are the respective 
weights (values in 
the eigen vectors of 
the kernel matrix)

Demo time: 
Tensorflow 
Embedding 
Projector
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https://www.sjsu.
edu/people/vishnu
.pendyala/

@vishnupendyala

This Photo by Unknown Author is licensed under CC BY-SA

https://www.sjsu.edu/people/vishnu.pendyala/
https://www.sjsu.edu/people/vishnu.pendyala/
https://www.sjsu.edu/people/vishnu.pendyala/
https://www.flickr.com/photos/sanjoselibrary/2530733933/
https://creativecommons.org/licenses/by-sa/3.0/

