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Which of these reveal the hidden structure of data?
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https://www.homeworklib.com/questions/1455781/1-use-appendix-table-iii-to-determine-the
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Why learn representations in lower dimensions?

Iad

VISUALIZATION:

PROJECTING
DATA POINTS
ONTO A2D OR
3D SPACE CAN
HELP IN
IDENTIFYING
PATTERNS,
CLUSTERS, OR
OUTLIERS.

G

DIMENSIONALITY COMPUTATIONAL

REDUCTION CAN

EFFICIENCY,

&R

OVERFITTING
MITIGATION BY

SIMPLIFY THE ESPECIALLY FOR ML REDUCING THE

DATA AND MAKE
IT MORE
MANAGEABLE.

ALGORITHMS
BASED ON
DISTANCE

CALCULATIONS

CAN LEAD TO

FASTER TRAINING
AND INFERENCE
TIMES.

COMPLEXITY
OF THE MODEL.

LOWER-
DIMENSIONAL
REPRESENTATIONS
CAN BE MORE
INTERPRETABLE
WHEN TRYING TO
UNDERSTAND AND
COMMUNICATE
THE RESULTS OF A
MACHINE
LEARNING MODEL.

More reasons to learn representations in
lower dimensions

patterns and group data points.

[z

Data Compression beneficial for storage and transmission of data.

Makes it easier for clustering and classification algorithms to identify

Anomalies or outliers may become more apparent in lower-dimensional

space, aiding in the detection of unusual or suspicious data points.

Identifying and retaining the most important features of the data while

w

discarding less important or redundant ones can lead to more efficient and
effective models.

Reduces the impact of noise or random variations in the data, making it
easier for models to focus on the underlying patterns.



Training data needs

ogrow exponentially

with dimensions
_O_

=> Learning in high

dimensions i1s

intractable

4.0

Distances
become less

meaningful
in high ©~
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Lellouche, S., & Souris, M. (2019). Distribution of
distances between elements in a compact set. Stazs, 3(1),

1-15.
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Curse of dimensionality: Hughes phenomenon
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Source: Hughes, G. F. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory,
14(1), 55-63.

* Does not require labels — unsupervised

* Data with many (m) features abstracted / condensed into fewer (k)
principal components (k < m) that are synthetic

Original Data

44— SMOoJ U

m columns s

-I k cols
—

<4——— smolu

Principal Component Analysis (PCA)




More Intuition

Movies are shot in 3D but

we watch in 2D without

much loss of information

even when dropping the
3rd dimension.

We listen to music when
working. But when we
need to focus, we drop

the music dimension
without forgoing much.

J

Some or all of the slides in this presentation mav have been influenced by or adopted from various sources for the sole purpose of teaching students and enhancing their learning experience.

* Everyone in my team contributes to my learning
My team provides great insights during discussions @ @ @
* Each team member creates a positive environment ‘ ‘ ‘

b Redundancy

* Can be replaced by

* My team generates great synergy

b Latent intent
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Which of the 4 plots is most likely?

Scenario 1 Scenario 2
A Y
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Scenario 3 Scenario 4

X-axis: DATA 245 Score
Y-axis: DATA 228 Score

Each vector represents
the scores obtained by
a student in the MSDA
program

If only one subject’s grade is available for
hiring an RA, what would that subject be?

Scenario 1 Scenario 2
A Y
*
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* * S
LR I
* * .
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Scenario 3 Scenario 4

X-axis: DATA 245 Score
Y-axis: DATA 228 Score

Each vector represents
the scores obtained by
a student in the MSDA
program

It is the
variance that
matters!
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https://commons.wikimedia.org/wiki/File:Barack_Obama_-_Caricature_(5337333337).jpg
https://creativecommons.org/licenses/by-sa/3.0/
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How do we
capture the
oddities or unique

variations in a
dataset?

Principal Component Analysis (PCA) — A Linear Technique

Originated in: Pearson, K. (1901). On Lines and Planes
& of Closest Fit to Systems of Points in Space.
Philosophical Magazine, 2, 559-572.

Significant Improvement: Hotelling, H. (1933). Analysis of a
Complex of Statistical Variables into Principal Components.
Journal of Educational Psychology, 24(6), 417-441.

First application: Goodall, D. W. (1954). Objective
methods for the classification of vegetation. Ill. An
essay in the use of factor analysis. Australian Journal of

Botany, 2(3), 304-324.

e



Can we use just
one dimension
for this 2D
data?

What's the
statistical
parameter that is
indicative of the
direction?

1/17/24



PCA: Ideas

Capture as much important
information in a dataset, but
using fewer features
(dimensions)

Drop least important
features so generated;
importance is indicative of
the variance in the data
the new feature captures

Keywords: variance;
orthogonal; relative
importance

Transform the feature
space: From correlated
features to entirely
uncorrelated, orthogonal,
synthetic features

Result: Original dataset is
now projected in a fewer
dimensional space

Think: covariance matrix;
eigen vectors (orthogonal
for symmetric matrices like
the covariance matrix);
eigen values

The notion of variance and correlation

N (,._)2
* One variable, Var(x): Li=q(Xi—X)~

Two Variables, Cov(x,y):

YN (=) (Vi=Y)
n

x and y are independent => cov(x,y) = 0; directly correlated => cov(x,y) >0

inversely correlated => cov(x,y) <0
cov(x,y)

JVar(x).Var(y)
* Three or more variables, Covariance Matrix:

Correlation Coefficient =

Cov(x,x) = var(x) l Cov(x,y) l Cov(x,z)
Cov(y,x) | Covly,y) =var(y)|  Cov(y,z2)
Cov(z,x) l Cov(z,y) | Cov(z,z) = var(z)

If the data is
already mean
adjusted, what is
the covariance?

1/17/24
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Kernel Matrix vs Covariance Matrix

XT= X= XTX=Kernel Matrix

pu— ~—
- < x1’< x1’< xl’ < xl'
x> x> x3> ]| 7 x>

< X2,|< X3,
x> | x>
< X3, < X3,
x> 7| xg>

< X, < x,,,
x> Xp>

Corollary: What is XX ?

Some or all of the slides in this presentation mav have been influenced by or adopted from various sources for the sole purpose of teaching students and enhancing their learning experience.

Eigenvalues and Eigenvectors
Eigenvalues (A) are scalar values that represent how a linear transformation
(represented by a matrix) stretches or compresses space.

For a given eigenvalue, there may be multiple eigenvectors. The set of all
eigenvectors corresponding to a particular eigenvalue is called the eigenspace.

If Ais a square matrix, A is an eigenvalue of A if there exists a non-zero
eigenvector v such that Av = Av.

Eigenvectors are non-zero vectors that only change by a scalar factor, A (direction
does not change) when a linear transformation, A is applied

Two properties useful for PCA:

* Orthogonality: Eigenvectors corresponding to distinct eigenvalues are
orthogonal (linearly independent) for symmetric matrices

e Eigenbasis: Eigenvectors can form a basis for a vector space

11
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Finding Eigenvalues and Eigenvectors

* Characteristic equation: Determinant of (A - Al) = 0, where A is the
matrix, A is the eigenvalue, and | is the identity matrix of the same
size as A.

* Why? Ax = Ax => (Ax — Ax) = 0 => (A — Al)x = 0 and by definition,
eigenvectors are non-zero, so det(A—Al) =0

* Solve the characteristic equation for A to find the eigenvalues.

* To find the eigenvectors, for each eigenvalue A:

* Substitute A back into the equation (A - Al)v =0, where v is the
eigenvector.

* Solve the resulting system of linear equations to find the
eigenvector v.

12
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Finding eigenvectors: 2x2 matrix example

. 4 2
* Matrix A: [3 _1]
* Characteristic equation: :
[4 -1 2 ] -0
3 -1-1
=>(4-A)(-1-N\)-6=0
A?2-30-10=0=>(A-5)A+2)=0
* Eigenvalues: A =5, -2
* Eigenvector for A = 5:
*(A-5l)v=0

) [_31 —26] [;Cf] =0

Finding eigenvectors:

2 1 3
e MatrixA: |1 2 3

3 3 20
* Characteristic equation:

[2—)\ 1 3

1 2—\N 3 ]=0
3 3 20—A

Expand the determinant using
cofactor expansion:

Choose a row or column to expand
along. For this example, let's expand
along the first row:

e=>-x+2y=0and3x—-6y=0

* Both the equations are identical to x
= 2y

* Solving this system gives many
eigenvectors such as v =[2, 1].

* Eigenvector for A = -2:
* (A+2l)v=0

6 211*1 _

3 1] [y] =0

* Again, the resulting equations are
identical toy = -3x

* Many eigenvectors like [1, -3], [2, -6]

3x3 symmetric matrix

(2 - A) * (submatrix determinant) - 1 *
(submatrix determinant) + 3 *
(submatrix determinant) =0

Evaluate each 2x2 submatrix
determinant:

(2-M)[(2-A)(20-A) -9] - 1[(1)(20 - A) -
9] +3[(1)(3) - (2-N(3)]

=> 13 -251% + 114A-120=0
=>(A-1)(A-5)(A-20)=0

A=1,5,20

Eigenvectors can be found like before

13



What if the
eigen values
canrot be
found or are

.‘ not real
- numbers?

Not Possible for Covariance matrices!

Eigen vectors of a Symmetric Matrix

If all the values in the symmetric matrix (ST = S) are real, then eigen
values and eigen vectors are [{=Ell numbers as well.

Eigen vectors of a real symmetric matrix are [s]gdg[el:{e]sF:]

Spectral b glefe1ife]4): S = QAQ" where Q is an orthogonal matrix

Q’s columns are eigen vectors of S

A is a diagonal matrix of eigen values of S

N IR EREEEHRREITEEGI R positive definite symmetric matrixEIiE
p05|t|ve

ced by or adopted from variot

1/17/24

14



Why are the eigenvalues of the Gram matrices nonnegative?

Let A be any eigenvalue of K = X7 X and the
corresponding eigen vector, v. Then,

XTX)v = v

vIXTXv =vT v
Xv)T(Xv) = Wl
(Xv)T(Xv) and vTv are both norms
so have to be positive

2 2

|IXvI|” = ]|

=>A1>0

29

Other interesting

properties
The eigenvalues of the XTXu = Au
. . T

covarlanc_:e _matrlx, XX' can XXTXy = XAy

also be similarly proved to be T

>0 XX (Xu) = AM(Xu)
Tr _ 1~

The Gram matrices XX and XX = Al

X™X share the same nonzero
eigenvalues (why?).

1/17/24
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Principal Components

* Sort the absolute |eigenvalues|

* PC1: Direction of maximum spread (variance) — the New Axes:
direction of the 1% eigenvector corresponding to the rotated and
. A H
largest absolute |eigenvalue| NP shifted pC2
e PC2: 2" eigenvector direction covering maximum .\ Q. /
residual variation left in the data, orthogonal to PC1 P .'\ Py /
¢ PC3 (if the original data has 3+ dimensions): 3™ O.Q. /O.
eigenvector direction with maximum spread left in o ee
data after PC1 and PC2, orthogonal to PC1 and PC2 / ..\.. ®
 Soon and so forth p g .. ; °
* Observation: PC1 covers most the spread; PC2 is K ° ; N
almost redundant )
* PC2 can be dropped without losing significant >
information that the data conveys Original Axes

Equations of the new axes in terms of the old

* Original features: x4, x5, X3, ...X,, ~ New uncorrelated PCs: z4, Z,, Z3, ..., Zim

* PC; (direction of the most spread): z; = ki1x1 + k1%, + -+ kijxm

* [kq1, k12, k13, ..., k1| is the 1st eigenvector of the covariance matrix
 PC, (direction of 2™ eigenvector): z, = ky X1 + Kp2Xy + ++ + Ko Xy,

* [kyq, ko2, K3, ..., ko] is the 2nd eigenvector of the covariance matrix
* PCp: Zy= kX1 + kipaxo + -+ Ky Xm

* The PCs capture all of the information in the original features

* Usually, the 15t few PCs capture most of the information; rest are redundant

* If so, keep the 1%t few and drop the rest => dimensionality reduction

16
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PCA: Dimensionality Reduction

* Cattell, Raymond B. (1966).
"The Scree Test For The
Number Of Factors".

Multivariate Behavioral o
Research. 1 (2): 245-276. o

= [To}

S o
* Scree Test: procedure of S

finding statistically significant i hkd

factors
]
o

* Y-axis: eigenvalues represent
the percentage of variance
explained by each PC

Figure By Staticshakedown - Own work, CC BY-SA 4.0,

Scree Plot

9 10 11 12

Component Number

https://commons.wikimedia.org/w/index.php?curid=75715167

PCA —The Process

Standardization

Covariance
Matrix

Joint

Scaling for
Zero mean
and unit
variance

features

Feature
Transformation
Projecting the
dataitemsto
the transformed

Computing the

variability of

Eigen
Decomposition

Covariance
Matrix

Factorization into
Eigen vectors

Dimensionality
Reduction

Based on
explained
Variance

17
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PCA: Implementation

* Data (2 features, 5 observations): * std_X = np.std(X, axis=0)
* X=[[1,2],12, 3], [4, 5], [5, 7], [8, 9] * #[2.44948974 2.56124969]

e Z=(X-mean X)/std X
e Standardization: Calculate the mean ( X)/std_

and standard deviation for each

variable: # Standardized data
. mean_x = np_mean(x' axis:O) Z= [[-122474487 -1.2493901 ]

#1[4.0,5.2] [-0.81649658 -0.85895569]
#mean X1=(1+2+4+5+8)/5 [O. -0.07808688]

=4.0 [ 0.40824829 0.70278193]
#mean X2=(2+3+5+7+9)/5 [1.63299316 1.48365074]]

=5.2

® Original Data (]

Standardized Data

Effect of

Standardization
of Data

Feature 2

0 2 4 6 8
Feature 1

18



PCA: Implementation (contd)

* covariance matrix of the standardized data:

Zt = np.transpose(Z)

cov_matrix = np.cov(Zt)

2=[[1.25 1.23530488]
[1.23530488  1.25]]

* eigenvalues, eigenvectors = np.linalg.eig(cov_matrix)

Eigenvalues: A1 = 2.48530488, A2 = 0.01469512

Eigenvectors: vl = [0.70710678, 0.70710678], v2 = [-0.70710678, 0.70710678]

* sorted_indices = np.argsort(eigenvalues)[::-1]
* sorted_eigenvectors = eigenvectors[:, sorted_indices]

* Choose the top k (=1, in this example) eigenvectors as principal components:
* principal_component = sorted_eigenvectors[:, 0] # First PC
principal_component = [0.70710678, 0.70710678]

PCA: Implementation (contd)

* Project the original data onto the selected principal component:

* transformed_data = Z.dot(principal_component)
[-1.74947761 -1.18472366 -0.05521576 0.785617 2.20380004]

* The transformed data now has a single dimension, representing the
projection of the original data onto the principal component

* This lower-dimensional representation captures the most significant
variance in the data.

1/17/24

19



1/17/24

Data Transformations in PCA

e} Original Data o
g Standardized Data
* Transformed Data in One PC
(]
6 -
[ | ]
oN
L
S 4
pa—
[go]
L @
2 =
0O4 = = < — =
—2 (0] 2 4 6 8

Feature 1

Relation to Linear Regression

PCA: Maximizing the stretch of
the projection

Linear Regression: Minimizing
Least Squares

Minimizing
this side
(least
square)

o . L Both are equivalent due to Pythagoras theorem
Is same as maximizing this side (projection)

20
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Application of
PCA

Pendyala, Vishnu S., and Foroozan Sadat Akhavan
Tabatabaii. "Spectral analysis perspective of why
misinformation containment is still an unsolved
problem." 2023 IEEE Conference on Artificial
Intelligence (CAI). IEEE, 2023.

21


http://tex.stackexchange.com/questions/39974/problem-with-a-very-heavy-eps-image-scatter-plot-too-heavy-as-eps
https://creativecommons.org/licenses/by-sa/3.0/

PCA on SBERT Embeddings on Balanced Dataset

endyala, Vishnu S., and Foroozan Sadat Akhavan Tabatabaii. "Spectral analysis perspective of why misinformation
containment is still an unsolved problem." 2023 IEEE Conference on Artificial Intelligence (CAl). IEEE, 2023.

PCA on SBERT Embeddings on Balanced Dataset Using SV
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More Interesting Applications of PCA

Source: Turk, M., & Pentland, A. (1991). Eigenfaces for recognition. Journal of

cognitive neuroscience, 3(1), 71-86.

Training Dataset

Eigen Faces from the dataset

An original face
image and its
projection onto
the face space
defined by the
eigenfaces

Average Face
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Source: Saleh, Mostafa E., A. Baith Mohamed, and A. Abdel Nabi. "Eigenviruses for
metamorphic virus recognition." IET information security 5.4 (2011): 191-198.

Eigenviruses are
vectors that span
across the most
important features
in the sample virus
files

Euclidean distance
used to find the
nearest neighbor for
classification
(recognition) of the
virus

Other eigen* applications of PCA (contd)

» Speaker recognition and verification: Captures principal components of

speech signals to create representative "eigenvoices."

* Kuhn, Roland, et al. "Rapid speaker adaptation in eigenvoice
space." IEEE Transactions on Speech and Audio Processing 8.6

(2000): 695-707.

+ Kwok, J., Mak, B., & Ho, S. (2003). Eigenvoice speaker adaptation via
composite kernel principal component analysis. Advances in Neural

Information Processing Systems, 16.

» Hand gesture recognition: principal components from hand images or

videos to generate "eigenhands."

+ Birk, Henrik, Thomas B. Moeslund, and Claus B. Madsen. "Real-time
recognition of hand alphabet gestures using principal component
analysis." Proceedings of the Scandinavian conference on image
analysis. Vol. 1. Proceedings published by various publishers, 1997.

23



Other eigen* applications of PCA (contd)

* Gesture recognition in general: Captures principal directions of variation in
gesture data to create "eigengestures."
* Nakajima, Masato, et al. "Motion prediction based on eigen-gestures." Proc.
of the 1st First Korea-Japan Joint Workshop on Pattern Recognition. 2006.
* Gawron, Piotr, et al. "Eigengestures for natural human computer interface."
Man-Machine Interactions 2. Springer Berlin Heidelberg, 2011.
* Texture analysis and synthesis: principal components of texture patterns to
create "eigentextures.”
* Vasilescu, M. A. O., & Terzopoulos, D. (2004). TensorTextures: Multilinear
image-based rendering. In ACM SIGGRAPH 2004 Papers (pp. 336-342).
* General image compression and representation: Computes eigenvectors of
image covariance matrices to form a basis for representing images
* Abadpour, A., & Kasaei, S. (2008). Color PCA eigenimages and their
application to compression and watermarking. Image and Vision Computing,
26(7), 878-890.

Principal >

Components _ o
of Non-linear
Data

Source: Scholz, M. (2012). Validation
of nonlinear PCA. Neural processing
letters, 36(1), 21-30.
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https://www.freesion.com/article/75911400158/
https://creativecommons.org/licenses/by-sa/3.0/
https://oku.edu.mie-u.ac.jp/~okumura/python/mnist.html
https://creativecommons.org/licenses/by/3.0/
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MDS is a spectral
method that
preserves the pair-
wise distances

between data items

What is the problem
with the approach?
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4.0

Distances

Lellouche, S., & Souris, M. (2019). Distribution of
distances between elements in a compact set. Stats, 3(1),
1-15.
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Solution: t-distributed stochastic neighbor
embedding (t-SNE)

Preserve only the smaller pairwise distances between data items (think
neighbors within a group)

Good at identifying clusters and anomalies, visualization of very high
dimensional data

Not good at preserving global distances like PCA does

Handles non-linear relationships among data well
Computation intensive

Stochastic elements: initialization, stochastic gradient descent

Highly configurable via hyperparameters and non-deterministic
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http://creativecommons.org/licenses/by/4.0/

T-SNE on
labeled
MNIST
handwritten
digits dataset
visualized
using the 1%
and 2nd
Principal
Components

T-SNNE on
unlabeled
MNIST

handwritten
digits dataset
visualized

using the 1*%
and 2nd
Principal

Components
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https://afiodorov.github.io/2019/05/27/tsne/
https://creativecommons.org/licenses/by-nc/3.0/
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Isomap
uses
Geodesic -
the
shortest
distance
between
two points
on a
manifold
surface,
honoring
the shape
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Uniform Manifold
Approximation and
Projection (UMAP)

* Builds a topological
representation of data

* Preserves both local and
global structure

* DBased on manifold
learning, graph theory

* Can capture non-linear
relationships in the data

* Computationally efficient
compared to t-SNE

[
o
s

Source: Pendyala, Vishnu, Konduri
Samhita, and Pendyala, Kriti,
"Analysis of Multilanguage Regional
Music Tracks using Representation
Learning Techniques in Lower
Dimensions." In 10th International
Conference On Mathematics And
Computing ICMC 2024. Springer.
[Best paper award]

-10

UMAP of MNIST Images
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Source: Tezuka, Naoya, et al. "Resilience of Wireless Ad Hoc Federated Learning against
Model Poisoning Attacks." 2022 IEEE 4th International Conference on Trust, Privacy and
Security in Intelligent Systems, and Applications (TPS-ISA). IEEE, 2022.
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Many algorithms for non-linear dimensionality reduction

2D projection of the swissroll Unrolled manifold
1.5 1 1 1 T 1 1.5 1 T 1 1 1
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Source: https://en.wikipedia.org/wiki/Nonlinear dimensionality reduction#/media/File:Lle hlle swissroll.pneCC BY 3.0

Taxonomy of dimensionality reduction techniques (2009)

Dimensionality
reduction

More than this now!

Source:Van Der Maaten, L.,
Postma, E., & Van den Herik, J.
(2009). Dimensionality
reduction: a comparative. /
Mach Learn Res, 10(66-71),

Convex Nonconvex

13.
Full spectral Sparse spectral ‘Welgf;ti:g::::dean Alll?nn;?r;g;;):al Neural network ‘
/ \
mapping g
Euclidean distance || Geodesic distance Kernel-based Diffusion distance Recongruchon Nelghborhongraph Local tangent space
weights Laplacian

PCA Kernel PCA . Laplacian Hessian LLE
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ncreasey a1y

Transform the non-
linear data into higher
dimensional space

Use the kernel matrix
in place of covariance
matrix and compute
the principal
components in the

Demo time:

Tensorflow
Embedding
Projector

Kernel PCA

the

dimensions: Run
PCA in higher
dimensional space

The feature vector x
1s transformed as:

) | Points: 150 | Dimension: 4
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Finding the eigen
values of the kernel
matrix is equivalent

to finding those of

the covariance matrix

oL; are the respective
weights (values in
the eigen vectors of
the kernel matrix)

o0 ©
L . .3.
[ ]
o . R R °
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https://www.sjsu.edu/people/vishnu.pendyala/
https://www.sjsu.edu/people/vishnu.pendyala/
https://www.sjsu.edu/people/vishnu.pendyala/
https://www.flickr.com/photos/sanjoselibrary/2530733933/
https://creativecommons.org/licenses/by-sa/3.0/

