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How do Streaming services know that these movies can be grouped together?
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Features are
expressed as

vectors
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Genre (Action)

Genre (Drama)

Genre (War)

Historical Accuracy

Heroism Level

Number of Battles

Emotional Depth
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IMDB User Rating

Feature vector x; =[8,7,6,7,9,5, 8, 8.4]
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Cluster plot
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Clustering relies on distances
in the feature space

May not correspond to
physical distance

Distance is a measure for
similarity

Smaller distance => better
similarity

Inter-cluster distances must
be maximized

Intra-cluster distances must
be minimized

No labels (unsupervised)

Labels => classification
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Some applications of Clustering: Social Media
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Many applications of clustering

= Google Scholar dbscan clustering

Articles About 64,000 results (0.06 sec)

Any time DBSCAN clustering algorithm based on density
Since 2025 D Deng - 2020 7th international forum on electrical ..., 2020 - ieeexp
Since 2024 ... In order to experiment the effect of DBSCAN algorithm, this pape

Since 2021 DBSCAN algorithm clustering on three data sets. These three data
Custom range... Y% Save DY Cite Cited by 245 (Related articles ) All 2 versions
DBSCAN: Past, present and future

K Khan, SU Rehman, K Aziz, S Fong... - The fifth international ..., 2(

... the DBSCAN for the purpose of effective clustering ... clusterin

their advantages and limitations. Section autlines the critical revie
Any type Y% Save Y9 Cite Cited by 795 (Related articles ) All 6 versions

Sort by relevance
Sort by date
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Classes are defined
and data labeled
manually
(Supervised)

Classes
VS

Clusters

Clusters are deduced
automatically, no
labels
(Unsupervised)
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Similarity metric: Cosine, Euclidean,
Manhattan, Geodesic, ...

Type of clustering: partitioning (non-overlapping
subsets), Hierarchical Clustering (tree-like),
Density-Based , Fuzzy Clustering (points to belong
to multiple clusters with varying degrees of
membership), ...

Hyperparameters:
What can you
choose for

clustering data?

Clustering algorithm: K-Means, Agglomerative
Clustering, Divisive Clustering, DBSCAN,...

Number of clusters — some algorithms
like K-Means need this
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How can we detect and form these clusters of
data points programmatically?
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How are clusters formed in real life?
FPolibical Farties
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How are clusters formed in real life?
Neéghb&rhooa(s

Community XYZ

Community ABC
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Bacteria Archaea Eukarya

Hierarchical

Spirochetes Chloroffexi Entamoebae 2'f';:|‘; Animals
mo

Gram-
positives

Methanosarcina Fungi

Methanobacterium Haloarchaea
Proteobacteria

HOW are Cyanobacteria
clusters formed Planctomyces
in real life?

\ = Plants
Methanococcus | 15

Thermococcus \ 'l
celer

Ciliates

Thermoproteus \. Flagellates
Pyrodicticum |
Bacteroides

Trichomonads
Cytophaga

Microsporidia
Thermotoga

Biological Species

Diplomonads
Aquifex f

Clustering algorithms for today

DENSITY-BASED
K-MEANS HIERARCHICAL

SPATIAL
LUSTERIN
cLus ¢ CLUSTERING OF

APPLICATIONS
WITH NOISE
(DBSCAN)
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The Goal of Clustering
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Entities within the clusters must be as
similar in the feature space as possible
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K-Means Clustering
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North Carolina State Board of Education Districts

Piedmont-Triad North Central Northeast
DISTRICT 5 DISTRICT 3 DISTRICT 1

Northwest
DISTRICT7

Western
DISTRICT 8

Southwest
DISTRICT 6

Southeast
_ DISTRICT2

K-means intuition:
School Districts
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Central to K-means: Centroid
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Centroid of a cluster
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Clustering Hyperparameter: Similarity Metric

| Metric | ___Formula___| __Properties | Best Used For

. . - Sensitive to
. n - Intuitive - Continuous data .
Euclidean . . . outliers
. (x; — y1)? - Preserves original - Low-dimensional .
Distance L o - Struggles with
i=1 space spaces ; i )
high dimensions
- Less sensitive to - Less intuitive
n
Manhattan Zl | outliers - Grid-like path - May not capture
X .
Distance i Vi - Computationally problems diagonal
i=1
efficient relationships
. - Parameter
. . - When optimal .
- Generalizes Euclidean .. selection can be
. q  n 1/p distance metric is )
Minkowski b (p=2) and Manhattan c challenging
. — v, unknown
Distance lel yil (p=1) . .. - Computationally
i=1 . - Tuning to specific . i
- Flexible parameter p intensive for non-
datasets .
integer p

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Distance metrics (continued)

| Metric | Formula____| _Properties | Best Used For

- Text analysis

- Not a true metric

n - Measures angle, - Recommender
Yiz1Xi Vi ] = (triangle
not magnitude  systems ) lity)
L inequality
2 2 -Bounded - When direction
im1Xi |2ty yi ounde - Undefined for

between -1 and 1 matters more

. zero vectors
than magnitude

- Correlated - Requires
Mahalanobis - ACCOU’.‘tS for features covariance matrix
Distance V(x—y)T21(x —y) correlations - Outlier detection estimation
-Scale-invariant - Classification - Computationally
tasks expensive
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Distance metrlcs (continued)

- Simple to
Count of positions compute
where vectors differ - Natural for

categorical data

AN B| - Ratio-based
— - Bounded
|A U B|
between 0 and 1
- Determined by
max(|x; —y;[) ~ Maximum
t difference

- Fast to compute

- Binary /
categorical
features

- Error detection
- Set-based
problems

- Document
similarity

- Warehouse/path
logistics

- When worst-
case difference
matters

| Metric | Formula____| _Properties | Best Used For

- Limited to same-
length sequences
- No concept of
magnitude

- Ignores
frequency

- Sensitive to small
sets

- Ignores
differences in
other dimensions
- Sensitive to
outliers in single
dimension

. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

What is the

problem with
Euclidean
distance?

It assumes that the points
are all on a hyperplane

----‘
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The K-Means Algorithm

* Most popular unsupervised machine learning for partitioning data
into K disjoint clusters based on features

* Goal: Minimize within-cluster variance (dissimilarity, measured by
distance or sum of squares}%

2=t —uy

j=1 necj
* X, is a vector representing the nt" data point, ; is the centroid of
the data points in the cluster C;, and |xn — ,uj| is the Euclidean
distance between them.

* Widely used in segmentation problems, quantization, and hidden
pattern (structure) recognition
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Why is Y, the centroid?

*Intra-cluster distance L = Z(x, — ;)

og—i = ZZ(Xn - HJ) =0
°=> = Z%, which is the formula for the

centroid, where P is the number of points in
the cluster

*Proves centroid (or the mean) is the most
representative point in the cluster

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
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Initial Set of Points
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Pseudo-centroids are chosen randomly
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Distances from each data point to the 1st random
pseudo-centroid are computed

D, = |M1—xi|2
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Distances from each data point to the 2nd random pseudo-centroid are

computed and compared with the distances from the 15t random centroid

D, = |x; —ﬂ1|2 D, = |x; —ﬂ2|2

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
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The point in the middle is green since it is closer to
the pseudo-centroid representing the green cluster
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Recompute the (real) centroids of the clusters
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The pseudo-centroids move inside the clusters
toward their real centers to become real centroids
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Distances are again computed from both (real) centroids
and compared => point in the middle now changes to blue

Dy = |x; — my|? D, = |x; — py|?

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
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What happens to the objective function with

this change to the point in the middle?

1= ¥ -

j=1nec(;

It reduces!

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

New centroids move further inside
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Distances from the new centroids are computed

|2

Dy =|x; —pmy D2=|xi_M2|2

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Based on the distances, the points do not change
clusters => convergence
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Final clusters after convergence
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K-Means Algorithm

Initialization 2. Update Step
* Randomly select K initial Recalculati centroids:
centroids: pq, U2, ..., Uk — (X
* Initial selection critically Hi = (|Ci|) Zxe ¢ X
impacts final clustering Until
Repeat Stopping Conditions:
1. Assighment Step Centroids no longer move
For each data point x: significantly | |ferq1 — Hel| < €
Assign to closest centroid: (or) No change in cluster
argming||x — p;l|? assignments

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

[llustration; 3 Features, k=2; Iteration 1, Step 1: Assignment

m Random Centroids: Centroid 1: (0, 0, 0) Centroid 2: (10, 10, 10)
| ﬂﬂﬂ
uster| = |X; — 1 — U
Lo e 28 3.742 13 928388
> 8 1.5 1.8 2.5 1 3.426368 13.990711
8 8 7 5 8 9 2 13.038405 5.477226
1 0.6 1 8 8 7 2 13.304135 4.123106
9 11 12 1 06 1 1 1.536229 15.822768
9 11 12 2 18.601075 2.449490

D;=/0—-12+(0-2)2+ (0—3)2 =14 = 3.742
D, =+/(10 - 1Z + (10 — 2)Z + (10 — 3)2 = V81 + 64 + 49 = V194 = 13.928

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
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Iteration 1: Update Step: Recalculate centroids.

*Centroid 1: Mean of (1, 2, 3), (1.5, 1.8, 2.5), (1, 0.6, 1)
=((1+1.5+1)/3, (2+1.8+0.6)/3, (3+2.5+1)/3) = (1.167, 1.467, 2.167)
*Centroid 2: Mean of (5, 8,9), (8, 8,7), (9, 11, 12) =(7.333, 9, 9.333)

3.742 1 3 928388

1.5 1.8 2.5 1 3.426368 13.990711
5 8 9 2 13.038405 5.477226
8 8 7 2 13.304135 4.123106

1 0.6 1 1 1.636229 15.822768
9 11 12 2 18.601075 2.449490
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From Iteration 2
*Centroid 1: (1.167, 1.467, 2.167)
*Centroid 2: (7.333, 9, 9.333)

Iteration 2: Assighment Step

From Iteration 1
*Centroid 1: (1.167, 1.467, 2.167)
*Centroid 2: (7.333, 9, 9.333)

Centroids do not change =>
algorithm converges

3D Scatter Plot of Data and Initial Centroids
S—
A Initial Centroids
= |x; —M1| |xz #2|
, L 7 ° 2
10

1 1.003328 11.367595
1 0.577350 11.513567
5.0 8.0 9.0 2 10.201634 2.560382
8.0 80 7.0 2 10.617909 2.624669
1.0 0.6 1.0 1 1.462874 13.420714
9.0 11.0 12.0 2 15.777833 3.726780
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K-means Flowchart

* EMis proven to converge
* K-meansisis aspecialcase of EM  Maximization

* =>|tis guaranteed to converge

Update Centroids

Assign Points to Nearest
8 Check Convergence

Initialize Centroids ettt

But convergence does not
imply optimality!

 Bad seeds canresultinbad
clusters / slow convergence
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Expectation

How do we know how many clusters?

Representation Learning in lower dimensions and
Spectral methods in Machine Learning
-. Eigen Decomposition, Eigen Faces, Manifold Learning ..

Dr. Vishnu S. Pendyala, Son Jose State University

Tuesday, January 16™, 2024, 7:00 pm PT (virtual)
Via Zoom and YouTube Live

Register (Free): https://r6.ieee.org/scv-
cs/representation-learning-in-lower-dimensions-and-
spectral-methods-in-machine-learning/

Vishnu S. Pendyala, Chair wes
@ COMPUTER

John Delaney, Vice Chair SOCIETY
Sujata Tibrewala, Secretary Sento Clora Volley Chopter
S.R. Venkatramanan, Treasurer
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Determining K: Elbow method

Elbow Method for Optimal k
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Computational complexity of K-Means

Computationally intensive steps:

The algorithm loops for
i: #iterations until convergence
K: #clusters for each cluster

n: #datapoints to compute distance of each point from k centroids
d: #dimensions for computing Euclidean distance from centroid
E.g.:y/(10 — 1)2 + (10 — 2)2 + (10 — 3)2

Therefore, time complexity: O(n*K* d * i)

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
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K-Means can only draw linear boundaries!

Original Dataset

K-means Clustering
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K-Means can only draw linear boundaries!

Original Full Moon-Like Dataset (Concentric Circles)

K-means Clustering on Full Moon-Like Dataset
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DBSCAN - Key insights

* Clusters data points that are closely packed (density).

* Points that are in low-density regions are flagged as noise.

Simple algorithm based on two hyperparameters to define “dense”

* Epsilon (g): Maximum distance between two points for them to
be considered as neighbors.

* MinPts: Minimum number of points required to form a dense
region within a radius €.

Some Applications:

* Geospatial Data: Identifying regions with high population density.
* Anomaly Detection: Detecting fraud or irregular patterns in data.
* Image Segmentation: Identifying regions of interest in images.

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License
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Feature 2

DBSCAN can form clusters of varied shapes

DBSCAN Clustering on Circles Dataset DBSCAN Clustering on Moons Dataset

104 e

0.5 A

o R | »
el

-1.0 -0.5 0.0 0.5 10 -1.0 -0.5 0.0 0.5 1.0 15 2.0
Feature 1 Feature 1
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Source: https://www.naftaliharris.com/blog/visualizing-ds
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DBSCAN Clustering with Core, Border, and Noise Points

Core, Border, and Noise Points

* Core Points: Points with at least .
MinPts neighbors within € and
will be included in a cluster. 2

* Border Points: Points that are
reachable from a core point but
do not have enough neighbors
to be core points.

Feature 2

-4 4
—6 4

-8

* Noise Points: Points that are
neither core nor border points, .|

@ Core Points
[ ] .
° @ Border Points
@ Noise Points

often considered outliers. 3

MinPts=5
...
(] o o
[ ] [.
¢ eps=1.7
'.

Feature 1
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A point p is directly density-

reachable from point q w.r.t. € and

MinPts if

* pis within the e-neighborhood
of q: distance(p,q) < € and

e (s acore point:

| {p’ € D | distance(q,p’) < €}

|> MinPts

Directly density reachability is not
symmetric!

Directly density-reachable

Directly Density-Reachable Points

4.0 - . Directly Density-Reachable .
Core Neighborhood (eps) =
’” N
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/
‘I \I
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Feature 1
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There is a chain of points that are directly density-
reachable, starting from g and ending at p => p is density
reachable from g w.r.t. € and MinPts

)enSity q,p1, P must be
Reachable coreromss
Points

Density reachability is also
not symmetric because direct

density-reachability is not!
Y Y MinPts =7

p and q are said to be
density-connected w.r.t. eps

Density Connected

Density-Connected Points in DBSCAN

s0{[@® CorePors « | and MinPts if there exists a
—— Density-Connected Points .
point v such that:
eps = 1 L :
MinPts = 3 e pisdirectly density-

FS
=)
/e

reachable from v
* qis directly density-

1\ o reachable from v

Density connected is
symmetric!

Feature 2
w
w

w
=}
L

N
w
L

g
o
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Feature 1
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DBSCAN — the algorithm - initialization

Input: A set of data points, along with two key parameters:

e £ (epsilon): The maximum radius of the neighborhood around a point.
® minPts: The minimum number of points required to form a dense

region (cluster).

Output: A set of clusters, with some points possibly marked as noise.

For each data point, DBSCAN classifies it into one of three categories:

e Core Point: A point that has at least minPts points (including itself)
within its e-neighborhood.

e Border Point: A point that has fewer than minPts points within its -
neighborhood but is within the e-neighborhood of a core point.

* Noise Point: A point that is neither a core point nor a border point.
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DBSCAN Algorithm - Forming clusters N

If a point is a core point,
a new cluster is started,
and all points in its &-
neighborhood are
added to this cluster.

Border points are
assigned to the cluster
of the core point that

expanded them.

If any of those
neighboring points are
core points themselves,
their e-neighborhoods
are recursively
processed.

Points that are neither
core points nor border
points are labeled as
noise.

For each core point’s €-
neighborhood, recursively
expand the cluster by
checking whether the
neighboring points are
core points or border
points.

The algorithm stops
when all points have

been processed (either
assigned to a cluster or
marked as noise).
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DBSCAN Clustering lllustration

@ Core Point

@ @ Border Point
',.'Clus‘teqr 1 ! Noise Point
i @ 4
e ®

. “ \ Epsilon (¢)
minPts = 3
Cluster 2

®
® ¢ @
Cluster 3 @
® Computational Complexity: O(N logN)
o ® o

DBSCAN forms clusters based on density: core points (blue) have at least minPts neighbors
in € distance, border points (red) are reachable from core points, and noise points (gray) are isola
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Noise resistant Clustering!

DBSCAN
usedin
preprocessing
for removing

noise
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DBSCAN is sensitive to hyperparameters and it is hard to choose the

right ones

Figure 8. DBScan
resulits for DST with
MinPts at 4 and Eps at
(a) 0.5 and (b) 0.4.

Figure 9. DBScan
results for DS2 with A FE
MinPts at 4 and Eps at

(@)5.0. (v) 3.5, and (@ (b)

(c) 3.0.

(@) (b)

Source: Data Mining: Concepts and Techniques (3 ed.)

Hierarchical
Clustering
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Hierarchical Clustering — Key Insights

* Hierarchical clustering organizes data into a hierarchy of nested clusters,
visualized as a dendrogram.

* Widely used in Biological sciences, Gene clustering, and Taxonomy creation
such as in web catalogs.

* No need to predefine the number of clusters.

* Flexible: Any number of clusters can be obtained by cutting the dendrogram
at the desired level.

* Quadratic complexity => Computationally intensive for large datasets
Agglomerative (Bottom-Up):

» Start with each point as its own cluster.

* Iteratively merge the closest clusters until one cluster remains.
Divisive (Top-Down):

» Start with one all-inclusive cluster.

* Recursively split clusters into smaller groups based on dissimilarity.
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Dendrogram for 5 clusters

Feature 2

Scatter Plot of Original Data Dendrogram
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o 74 Cluster standard
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Divisive Clustering Algorithm

e Start with all pointsinone ¢ Less commonly used due to
cluster. higher computational

* Recursively split clusters demands
based on dissimilarity.

* The sequence of splits can
be shown using a
dendrogram.

* Horizontal cuts to the
dendrogram define the
number of clusters desired
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Agglomerative Clustering Algorithm

1.Compute the distance » Distance Metrics:
matrix between data points. « Single linkage (minimum
2.Let each point be a cluster. distance).
3.Repeat: * Complete linkage
1.Merge the two closest (maX|murn distance).
clusters. * Average linkage
2.Update the distance * DiStanPG between
matrix. centroids
4.Stop when only one cluster ~ * Yvard's method
remains

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Single Linkage Complete Linkage

(Minimum Distance) (Maximum Distance)

O

, , \
min distan .
& max distance
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Average Linkage
(Mean Distance)

Centroid Distance Method

(Distance Between Cluster Centroids)

(avg of all points in A)
Centroid A

centroid_A, centroid_B)

d(AB) = (dy + dy + d3 + .. +do)/9

Where dy, ds, ..., dg are all pairwise distances
Centroid B

(avg of all points in B)
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Ward’s method

Step 1: Original Clusters

Centroid A

i 4

Centroid B
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Step 2: Calculate Within-Cluster Sum of Squares

For cluster A: For cluster B:
ESS(A) = £ ||x - centroid_A||? ESS(B) = Z ||x - centroid_B||[?
= d12 + dzz + d32 = d42 + d52 + d62

Total Error Sum of Squares = ESS(A) + ESS(B)
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Step 3: Calculate Error for Hypothetical Merged Cluster

AuB

Merged Centroid = (|A|-centroid_A + |B|-centroi;'j;B)/(lA|+|B|)
ESS(AUB) = % ||x - centroid_merged||?
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Step 4: Calculate Ward's Distance

Ward's Criterion = ESS(AUB) - [ESS(A) + ESS(B)]
= |ncrease in within-cluster sum of sauares

©Vishnu S. Pendyala This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License

Agglomerative Clustering - lllustration

Dataset Proximity Matrix (Euclidean Distance)

0.000000 2.828427 5.656854 9.219544 12.041595
2.828427 0.000000 2.828427 6.403124 9.219544
5.656854 2.828427 0.000000 3.605551 6.403124
9.219544 6.403124 3.605551 0.000000 2.828427
12.041595 9.219544 6.403124 2.828427 0.000000

Dendrogram (Group Average)

Scatter Plot of Data Points

Dendrogram (Complete Linkage)
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Feature 1 Data Points
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Agglomerative Clustering - lllustration

Dataset Proximity Matrix (Euclidean Distance)

A |/ B | C | D | _E_ |

0.000000 2.828427 5.656854 9.219544 12.041595
2.828427 0.000000 2.828427 6.403124 9.219544
5.656854 2.828427 0.000000 3.605551 6.403124
9.219544 6.403124 3.605551 0.000000 2.828427
12.041595 9.219544 6.403124 2.828427 0.000000

12 Dendrogram (Single Linkage) Dendrogram (Ward's Method)

IS
o

C A B D E D E C A B
0 Data Points Data Points
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Single Linkage Average Linkage Complete Linkage Ward Linkage

SIS 28 et Toac St
ource: https://scikit-learn.org
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MiniBatch Affinity Spectral Agglomerative Gaussian
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How do we know which
cluster arrangement is the

best?

No evaluation metric is perfect; need to depend on heuristics
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Metrics: Sum of intra-
cluster distances

) But what matters is the
Evaluatmg impact of the clustering on

clusters business / application
needs!

Final authority in evaluation

is the human user
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Silhouette Score to evaluate the quality of clustering

Silhouette score ‘s’ = where range is [-1, 1] and

max(a,b)
* a: The average distance between a point and all other points in its own
cluster (intra-cluster distance).

* b: The average distance between a point and all the points in the nearest
cluster it does not belong to (inter-cluster distance).

» Often used for selecting the optimal number of clusters

* S close to 1: Data point is well-clustered, far from other clusters.

* S close to 0: Data point is on the border of clusters, unclear which
cluster it belongs to.

* Sclose to -1: Data pointis probably in the wrong cluster.

* Sensitive to the shape of clusters. May not perform well for non-convex
clusters.
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Stay in touch!
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Questions

and answers
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