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Abstract

In this work, we present and evaluate a machine learning
framework that takes as input a domain name (based on the
respective DNS request) and outputs the content category it
belongs to. We evaluate several options for feature engineering
and classification to find the most optimal setup for the specific
problem domain. We also address the problem of data
collection and preprocessing. We propose a SERP (Search
Engine Response Pages)-mining approach to collect and label
an appropriate dataset. Our experimental evaluation uncovers
several interesting insights and forms the basis for further work
into this interesting domain. The problem we addressed is
summarized in the High-level architecture diagram.
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The system architecture of the overall framework,
containing the DNS Classification module, data pre-
processing, feature engineering and classification steps

Motivation and Contribution

There exists several categories of web pages that belong to

“borderline” categories (e.g. websites

selling illegal

substances or weapons) and might be of interest for any
public or private organization to monitor as outgoing traffic.

We built a machine learning framework for classifying DNS
requests into topic categories, including data collection, pre-
processing, and classification

configurations.
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« A total of 112 categories to be classified, with 11,278
Instances
« Of those categories, 82 fall under “general” content and 30
fall under “borderline™ categories to be monitored.
SAMPLE INSTANCES FROM OUR DATASET
TITLE DESCRIPTION CATEGORY
Start advertising with our self-
» NP service solutions ... Combine sight, ricinG
:.\W"t:“m Adver- sound, and motion in ads on Ama- /;d?uﬂsmg_
ISIng zon sites, devices like Fire Tablet, | °'
and across the web.
If you decline, your information
won't be tracked when you visit
this website. ... Roku Advertis-
Roku Advertis- | ing delivers relevant audiences and | Advertising
ing measurable results. ... our robust | Site
advertising platform offers brands
the ability to reach the growing
audience that...
Conclusions
 Considering the multiple configurations used, Random
forest, logistic regression, and SVM were the best
performing classifiers and LDA performed less than
expected, reinforcing the saying that “simpler is better” Iin
machine learning applications.
« We also observed that the borderline instance classification

does not follow the same patterns as the regular ones, with
the title of a URL being a more weak indicator of the class
label than its description.

IEEE Big Data 2019 Conference Paper: Lu, Junlan & Saunshi,
Nikhil & Mangune, Aldrich & Eirinaki, Magdalini & Yu, Bin & Liu,
Cricket. (2019). A SERP-Mining Approach for Classification of
DNS Requests.




