SJSU Student Research Competition Finalist A SERP-Mining Approach for Classification of DNS Requests Junlan Lu, Nikhil Saunshi Takappa, Aldrich Mangune and Dr. Magdalini Eirinaki College of Engineering

Abstract

In this work, we present and evaluate a machine learning framework that takes as input a domain name (based on the respective DNS request) and outputs the content category it belongs to. We evaluate several options for feature engineering and classification to find the most optimal setup for the specific problem domain. We also address the problem of data collection and preprocessing. We propose a SERP (Search Engine Response Pages)-mining approach to collect and label an appropriate dataset. Our experimental evaluation uncovers several interesting insights and forms the basis for further work into this interesting domain. The problem we addressed is summarized in the High-level architecture diagram.

Motivation and Contribution

• There exists several categories of web pages that belong to "borderline" categories (e.g. websites selling illegal substances or weapons) and might be of interest for any public or private organization to monitor as outgoing traffic.

The system architecture of the overall framework, containing the DNS Classification module, data preprocessing, feature engineering and classification steps We built a machine learning framework for classifying DNS requests into topic categories, including data collection, preprocessing, and classification through various configurations.

SERP Dataset

- A total of 112 categories to be classified, with 11,278 instances
- Of those categories, 82 fall under "general" content and 30 fall under "borderline" categories to be monitored.

SAMPLE INSTANCES FROM OUR DATASET

TITLE	DESCRIPTION	CATEGORY
Amazon Adver- tising	Start advertising with our self- service solutions Combine sight, sound, and motion in ads on Ama- zon sites, devices like Fire Tablet, and across the web.	Advertising Site
Roku Advertis- ing	If you decline, your information won't be tracked when you visit this website Roku Advertis- ing delivers relevant audiences and measurable results our robust advertising platform offers brands the ability to reach the growing audience that	Advertising Site

Experimental Results

Table 1: Accuracy of LDA-enhanced ML classification. Results report metr	ric
scores for different passes p , different number of topics n and top words t for	for
newsgroup20 and Yelp datasets.	

	Dataset			Ne	wsgroup	20		Yelp				
	Model		rf	knn	SVC	nb	lr	rf	knn	nb	lr	
	n10	t10	0.085	0.046	0.049	0.072	0.066	0.437	0.231	0.159	0.436	
n10	n10	t50	0.258	0.242	0.05	0.241	0.164	0.435	0.443	0.327	0.447	
pro	n 20	t10	0.087	0.054	-	0.088	0.068	0.441	0.418	0.333	0.437	
	1120	t50	0.328	0.315	0.048	0.307	0.145	0.375	0.38	0.32	0.443	
	n10	t10	0.078	0.052	-	0.066	0.049	0.453	0.212	0.392	0.452	
n20	1110	t50	0.303	0.287	-	0.274	0.146	0.451	0.44	0.31	0.447	
p20		t10	0.103	0.056	-	0.1	0.073	0.446	0.361	0.36	0.446	
	1120	t50	0.329	0.325	-	0.305	0.183	0.373	0.379	0.271	0.45	
	n10	t10	0.083	0.038	-	0.067	0.048	0.457	0.234	0.451	0.456	
n50	1110	t50	0.306	0.298	0.051	0.296	0.185	0.439	0.442	0.305	0.443	
poo	n20	t10	0.089	0.069	-	0.089	0.074	0.438	0.306	0.348	0.438	
	1120	t50	0.352	0.329	0.048	0.316	0.098	0.402	0.403	0.303	0.443	
	n10	t10	0.079	0.058	-	0.066	0.054	0.451	0.128	0.44	0.45	
n100	1110	t50	0.308	0.305	0.049	0.293	0.118	0.432	0.432	0.313	0.449	
p100	n20	t10	0.103	0.055	-	0.094	0.059	0.448	0.377	0.339	0.448	
	1120	t50	0.34	0.321	0.05	0.3	0.21	0.444	0.425	0.343	0.443	

Table 2: Accuracy of LDA-enhanced ML classification. Results report metric scores for different passes p, different number of topics n and top words t for url-title and url-description datasets.

I	Dataset				Title				D	escriptio	n	
	Model		rf	knn	SVC	nb	lr	rf	knn	SVC	nb	lr
	n10	t10	0.037	0.017	0.017	0.02	0.022	0.026	0.013	0.021	0.019	0.021
n10	1110	t50	0.3	0.25	0.018	0.085	0.018	0.088	0.066	0.019	0.08	0.019
pro	n20	t10	0.025	0.01	0.017	0.013	0.022	0.025	0.008	0.018	0.009	0.018
	1120	t50	0.275	0.229	0.022	0.095	0.052	0.134	0.101	0.018	0.092	0.018
	n10	t10	0.048	0.018	0.016	0.026	0.027	0.024	0.013	0.014	0.016	0.014
n20	1110	t50	0.285	0.239	0.017	0.099	0.017	0.095	0.081	0.017	0.092	0.017
p20	n20	t10	0.024	0.007	0.017	0.012	0.024	0.028	0.011	0.022	0.01	0.022
	1120	t50	0.274	0.235	0.023	0.108	0.057	0.145	0.121	0.017	0.129	0.017
	n10	t10	0.045	0.019	0.02	0.026	0.029	0.019	0.012	0.017	0.019	0.017
n50	1110	t50	0.287	0.246	0.021	0.087	0.023	0.102	0.083	0.016	0.085	0.016
poo	n20	t10	0.021	0.016	0.015	0.015	0.021	0.03	0.012	0.021	0.009	0.021
	1120	t50	0.285	0.231	0.018	0.104	0.045	0.156	0.131	0.019	0.137	0.019
	n10	t10	0.035	0.02	0.016	0.019	0.026	0.03	0.01	0.021	0.017	0.021
p100	1110	t50	0.255	0.204	0.021	0.098	0.024	0.117	0.087	0.019	0.111	0.019
PI00	n20	t10	0.027	0.011	0.019	0.015	0.022	0.025	0.01	0.019	0.008	0.02
	1120	t50	0.268	0.206	0.015	0.103	0.036	0.145	0.129	0.016	0.127	0.016

Table 3: Precision score, F1 score and cross validation accuracy for *title* and *description* input datasets over all DNS categories

Dataset		Title			Description	
Model	Precision	F1	Accuracy	Precision	F1-score	Accuracy
rf.w2v	0.84	0.83	0.94	0.76	0.73	0.92
rf.tfidf	0.89	0.88	0.95	0.85	0.84	0.94
knn.w2v	0.81	0.79	0.93	0.74	0.71	0.91
knn.tfidf	0.91	0.82	0.78	0.84	0.81	0.94
svc.w2v	0.86	0.85	0.93	0.82	0.8	0.89
svc.tfidf	0.91	0.88	0.93	0.86	0.84	0.94
nb.w2v	0.84	0.80	0.82	0.76	0.70	0.73
nb.tfidf	0.88	0.85	0.90	0.85	0.76	0.89
lr.w2v	0.86	0.85	0.89	0.81	0.79	0.89
lr.tfidf	0.86	0.85	0.94	0.86	0.85	0.94

Table 4: Precision score, F1 score and cross validation accuracy for "Borderline"

Dataset		Title		D	escriptic	on
Model	Precision	F1	Accuracy	Precision	F1	Accuracy
rf.w2v	0.80	0.78	0.93	0.79	0.78	0.94
rf.tfidf	0.81	0.78	0.90	0.85	0.82	0.94
knn.w2v	0.70	0.67	0.78	0.77	0.76	0.94
knn.tfidf	0.73	0.72	0.92	0.79	0.77	0.94
svc.w2v	0.79	0.77	0.91	0.83	0.81	0.90
svc.tfidf	0.82	0.79	0.88	0.85	0.83	0.94
nb.w2v	0.77	0.73	0.77	0.77	0.73	0.80
nb.tfidf	0.80	0.75	0.85	0.84	0.76	0.90
lr.w2v	0.80	0.79	0.93	0.84	0.83	0.94
lr.tfidf	0.85	0.82	0.86	0.85	0.83	0.95

Table 5: Precision score, F1 score and cross validation accuracy for "General" subset

Dataset		Title		D	escripti	on
Model	Precision	F1	Accuracy	Precision	F1	Accuracy
rf.w2v	0.82	0.81	0.94	0.75	0.71	0.91
rf.tfidf	0.90	0.88	0.95	0.84	0.83	0.94
knn.w2v	0.78	0.76	0.92	0.74	0.69	0.90
knn.tfidf	0.90	0.84	0.94	0.83	0.81	0.94
svc.w2v	0.86	0.85	0.93	0.80	0.78	0.87
svc.tfidf	0.90	0.87	0.93	0.88	0.85	0.95
nb.w2v	0.83	0.80	0.81	0.74	0.69	0.73
nb.tfidf	0.89	0.85	0.85	0.85	0.77	0.77
lr.w2v	0.85	0.84	0.89	0.81	0.80	0.90
lr.tfidf	0.91	0.89	0.95	0.87	0.85	0.94

Conclusions

- Considering the multiple configurations used, Random forest, logistic regression, and SVM were the best performing classifiers and LDA performed less than expected, reinforcing the saying that "simpler is better" in machine learning applications.
- We also observed that the borderline instance classification does not follow the same patterns as the regular ones, with the title of a URL being a more weak indicator of the class label than its description.

IEEE Big Data 2019 Conference Paper: Lu, Junlan & Saunshi, Nikhil & Mangune, Aldrich & Eirinaki, Magdalini & Yu, Bin & Liu, Cricket. (2019). A SERP-Mining Approach for Classification of DNS Requests.