SAN JOSÉ STATE UNIVERSITY SJSU Undergraduate Research Grants

Effect of Vesicular Glutamate Deficiency on Stretch Sensitivity in Mice

Alyssa Occiano, Kimberly Than, Cebrina Bustos, Enoch Kim, Alexandra Salazar, Nikola Klier, Tyler Nguyen, Serena Ortiz, Natanya Villegas, & Katherine Wilkinson Department of Biological Sciences, San José State University, San José, CA 95192

Introduction

SJSI

- Proprioception is the body's ability to sense its relative position in space¹.
- Muscle spindle afferents (MSAs) are important proprioceptors and deficits in MSAs can cause issues with body movement coordination and balance².
- Glutamate is released from synaptic-like vesicles located at the MSA nerve endings when a muscle stretch occurs.
- Prior studies have suggested that glutamate release leads to increased sensitivity to stretch. The effect of glutamate on individual MSAs is unknown³.

- *In vitro* preparation of the extensor digitorum longus (EDL) muscle and the deep peroneal branch of the sciatic nerve.
- Record sensory activity of stretch-sensitive MSAs through suction electrode with extracellular amplifier.
- Muscle undergoes a series of stretches and vibrations using a force and length transducer.

Findings

- Results so far have been variable half of the transgenic mice exhibited normal stretch response while the other half exhibited decreased MSA firing rates.
- Future experiments will be carried out to expand sample size of VGLUT1 deficient data.

Research Questions and Project Activities

- This project looks to reveal more information about the role of glutamate in stretch sensitivity within muscles. Specifically, how does glutamate affect the firing rates of individual MSAs?
- We hypothesize that we will see lower firing rates in transgenic mice that lack the ability to release glutamate due to the reduction in vesicular glutamate transporter 1 (VGLUT1).

• Two VGLUT1 deficient mice exhibited initial and final static time firing rates similar to the control, while the other two exhibited decreased firing frequencies.

Citations

- Proske, U. & Gandevia, S. C. The Proprioceptive Senses: Their Roles in Signaling Body Shape, Body Position and Movement, and Muscle Force. *Physiol. Rev.* 92, 1651–1697 (2012).
- Shape, Body Position and Movement, and Muscle Force. *Physiol. Rev.* 92, 1651–1697 (2012)
 Franco, J.A., Kloefkorn, H.E., Hochman, S., & Wilkinson, K.A. An *In Vitro* Adult Mouse Muscle-nerve Preparation for Studying the Firing Properties of Muscle Afferents. J. Vis.
- Exp. 91 (2014).
 Bewick, G. S., Reid, B., Richardson, C., & Banks, R. W. Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending. J. Physiol. 562, 381–394 (2005).