SJSU Undergraduate Research Grants

Lithium Fluoride Coated Titanium Dioxide (Bronze) Nanowires in Lithium Ion Batteries

David Alcazar, Sanyam Pusri, Dr. Dahyun Oh Department of Chemical and Materials Engineering

Abstract

SJSU SAN JOSÉ STATE UNIVERSITY

The goal of this research is to build a next generation lithium-ion battery (LIB) to meet the growing demand for energy storage devices. In this project, a metastable phase of Titanium Dioxide (TiO₂), Bronze phase (TiO₂(B)), in the form of nanowires are chosen due to their high specific capacity as well as higher surface area for lithiation in Lithium Ion Batteries, allowing for a more energy dense electrode in aqueous electrolyte LIBs.

To prevent any potential water electrolysis reaction on these nanowires, it is proposed to pair them with a LiF (lithium fluoride) coating that ideally passes lithium-ions but blocks water molecules thus creating an artificial Solid Electrolyte Interphase.

Project Activities and Findings

We have successfully formulated a hydrothermal synthesis to create the metastable TiO₂(B) NW (nanowires), which have been verified through XRD, SEM, and TEM

A slurry and doctor blading method was chosen to preserve the morphology of the NW, which has yielded promising results with initial discharge capacity over 92 mAh/g

(b)

SEM/TEM Imaging Verification

Figure 2. (a) SEM images of B13-B TiO₂(B) nanowires (b) TEM images of B21 TiO₂(B) nanowires

Citations and Credits

(a)

Armstrong, A. R., Armstrong, G., Canales, J., & Bruce, P. G. (2004). TiO2-B Nanowires. Angewandte Chemie, 116(17), 2336–2338. doi: 10.1002/ange.200353571

Du, Z., Peng, W., Wang, Z., Guo, H., Hu, Q., & Li, X. (2018). Improving the electrochemical performance of Lirich III.2NI0.13C0.13Mn0.5402 cathode material by LiF coating. *Jonics*, 24(12), 3717–3724. doi: 10.1007/s1158-1018-255-9

Li, J., Wan, W., Zhou, H., Li, J., & Xu, D. (2011). Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-lon batteries. *Chemical Communications*, 47(12), 3433. doi: 10.1039/JOCC04634e

Yang, Y., Wang, Z., Zhou, R., Guo, H., & Li, X. (2016). Effects of lithium fluoride coating on the performance of nano-silicon as anode material for lithium-ion batteries. *Materials Letters*, 184, 65–68. doi: 10.1016/j.matter.2016.08.006

Zhang, L., Zhang, K., Shi, Z., & Zhang, S. (2017). LiF as an Artificial SEI Layer to Enhance the High-Temperature Cycle Performance of Li4Ti5O12. *Langmuir*, 33(42), 11164–11169. doi: 10.1021/acs.langmuir.7b02031

Special thank you to: Dr. Wagner for his help in TGA Dr. England for his help with XRD Phase Identification Pei-En Weng for his help with TEM imaging at Lawrence Berkeley National Labs