U SAN JOSÉ STATE SJSU Undergraduate Research Grants Evaluating Adaptive Ramp Metering through Partial Least Squares Path Modeling Nivedha Murugesan, Advisor: Dr. Cristina Tortora Department of Math and Statistics, College of Science

Abstract

We use Partial Least Squares Path Modeling (PLS-PM) to view how the Adaptive Ramp Metering (ARM) system impacts certain freeway metrics when compared to a baseline Coordinated Ramp Metering (CRM) system. We collect data from two comparable freeways: I-80 East (ARM) and I-280 South (CRM). Next, we use path modeling to build a relationship between measures of traffic, safety, efficiency, and travel time reliability. By using the binary variable *arm* to indicate which freeway each observation comes from, we were able to quantify the difference between the two systems.

Research Questions

- Research was based on Mineta Transportation Institute grant
- Three types of CRM systems
 - (1) Fixed Ramp Metering
 - (2) Local Traffic Responsive Metering

- (3) Adaptive Ramp Metering (ARM)
- Focus of research was ARM system on I-80
 East, implemented in April 2017
- Main Question: How does the ARM system impact I-80 East in terms of traffic, safety, efficiency, and travel time reliability?

Figure 1: Freeway of interest, I-80 East.

Variable	Description of Variable
Traffic	Measures overall traffic on freeway
aadt	Annual Average daily traffic per segment
lanes	Number of lanes per segment (excluding carpool/HOV lanes)
Safety	Measures safety of freeway
crashes	Total number of car crashes that occurred per segment
Efficiency	Measures overall efficiency of freeway
vht	Total sum of hours traveled by vehicles per segment
arm	Binary variable: 0 if segment is from I-280, 1 if segment is from I-80
Reliability	Measures overall travel time reliability of freeway
delay	Total hours of delay per segment
length	Length of segment (in miles)

arm	Binary variable: 0 if segment is from I-280, 1 if segment is from I-80
-----	--

Table 1: Overview of variables used in path model.

Figure 3: Finalized path diagram with numerical path coefficients.

Project Activities or Findings

- PLS-PM uses multivariate models to quantify latent variables through manifest variables
 - Latent variables: variables that cannot be measured directly Manifest variables: variables that can be measured directly
- Result: PLS-PM indicates that Adaptive Ramp Metering improves efficiency and travel time reliability of the freeway when compared to baseline Coordinated Ramp Metering.

Figure 2: Example of Coordinated Ramp Metering system.

Citations

[1] "Caltrans PeMS." [Online]. Available: http://pems.dot.ca.gov/.

[2] G. Sanchez, PLS Path Modeling with R, 2013.

[3] H. Ravand and P. Baghaei, "Partial least squares structural equation modeling with R", Practical Assessment, Research Evaluation, vol. 21, no. 11, 2016.

[4] G. Sanchez, L. Trinchera, and G. Russolillo, "plspm: Tools for Partial Least Squares Path Modeling (PLS-PM). R package version 0.4.9," URL: https://CRAN.R-project.org/package= plspm, 2017.

[5] Y. Rongjie, Z. Yin, Q. Yong, and P. Yichuan, "Utilizing Partial Least-Squares Path Modeling to Analyze Crash Risk Contributing Factors for Shanghai Urban Expressway System", ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, vol. 5, no. 4, 2019.

[6] M. Elyasi, M. Saffarzade, and A. Boroujerdian, "A PLS/SEM Approach Risk Factor Analysis in Road Accidents Caused by Carelessness", International Journal of Engineering and

Advanced Technology (IJEAT), vol. 5, no. 6, 2016.

[7] Caltrans, An Introduction to the California Department of Transportation Performance Measurement System (PeMS), 2013.